Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1152/ajprenal.00040.2014

http://scihub22266oqcxt.onion/10.1152/ajprenal.00040.2014
suck pdf from google scholar
C4080153!4080153!24872316
unlimited free pdf from europmc24872316    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid24872316      Am+J+Physiol+Renal+Physiol 2014 ; 307 (1): F33-40
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • High-salt diet blunts renal autoregulation by a reactive oxygen species-dependent mechanism #MMPMID24872316
  • Fellner RC; Cook AK; O'Connor PM; Zhang S; Pollock DM; Inscho EW
  • Am J Physiol Renal Physiol 2014[Jul]; 307 (1): F33-40 PMID24872316show ga
  • High dietary salt is common in Western countries and is an important contributor to increased cardiovascular disease. Autoregulation of renal blood flow (RBF) and glomerular filtration rate (GFR) is an essential function of the renal microcirculation that could be affected by excessive dietary salt. High salt (HS) increases renal ROS generation partly by the enzyme NADPH oxidase. We hypothesized that a HS diet would impair autoregulation via NADPH oxidase-dependent ROS generation. The role of NADPH-dependent ROS production on the blunted autoregulatory response with a HS diet was assessed in vitro and in vivo using the blood-perfused juxtamedullary nephron preparation and anesthetized rats, respectively. The increase in renal lipid peroxidation and p67phox expression induced by HS was prevented by apocynin treatment. Control afferent arterioles exhibited normal autoregulatory behavior in response to acute increases in renal perfusion pressure, whereas arterioles from HS rats exhibited a blunted response. Autoregulatory behavior in HS rats was restored in vitro by acute exposure to the NADPH oxidase inhibitor apocynin. At the whole kidney level, in vivo experiments showed that both RBF and GFR declined in HS rats when left kidney renal perfusion pressure was reduced from ambient to 95 mmHg, whereas control rats maintained stable GFR and RBF consistent with efficient autoregulatory behavior. Apocynin treatment improved in vivo autoregulatory behavior in HS rats and had no detectable effect in normal salt diet-fed rats. These data support the hypothesis that impaired renal autoregulatory behavior in rats fed a HS diet is mediated by NADPH oxidase-derived ROS.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box