Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.4315/0362-028X.JFP-12-361

http://scihub22266oqcxt.onion/10.4315/0362-028X.JFP-12-361
suck pdf from google scholar
C4073237!4073237!23575140
unlimited free pdf from europmc23575140    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid23575140      J+Food+Prot 2013 ; 76 (4): 712-8
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Inactivation of the Tulane Virus, a Novel Surrogate for the Human Norovirus #MMPMID23575140
  • TIAN P; YANG D; QUIGLEY C; CHOU M; JIANG X
  • J Food Prot 2013[Apr]; 76 (4): 712-8 PMID23575140show ga
  • Human noroviruses (HuNoVs) are the major cause of nonbacterial gastroenteritis epidemics. The culturable feline calicivirus and murine norovirus have been used extensively as surrogates to study HuNoV biology, as HuNoV does not grow in vitro. Additional efforts to identify new surrogates are needed, because neither of these common surrogates are truly intestinal pathogens. The newly described Tulane virus (TV) is a typical calicivirus, it is isolated from macaque stools, is cultivable in vitro, and recognizes human histo-blood group antigens. Therefore, TV is a promising surrogate for HuNoVs. In this study, we evaluated the resistance or stability of TV under various physical and environmental conditions by measuring a 50% reduction of tissue culture infective dose (TCID50) by using a TV cell culture system. Due to the nature of this virus, it is hard to produce a high-titer stock through tissue culture. In our study, the maximal reduction in virus titers was 5 D (D = 1 log) in heat-denaturation and EtOH experiments, and 4 D in UV, chlorine, and pH-stability experiments. Therefore in this study, we defined the inactivation of TV as reaching a TCID50/ml of 0 (a 4- to 5-D reduction in TCID50, depending on the detection limit). TV was inactivated after incubation at 63°C for 5 min, incubation at 56°C for 30 min (5 D), exposure to 60 mJ/cm2 of UVC radiation (4 D), or incubation at 300 ppm of free chlorine for 10 min (4 D). TV was shown to be stable from pH 3.0 to 8.0, though an obvious reduction in virus titer was observed at pH 2.5 and 9.0, and was inactivated at pH 10.0 (4 D). TV was resistant to a low concentration of EtOH (40% or lower) but was fully inactivated (5 D) by 50 to 70% EtOH after a short exposure (20 s). In contrast, quantitative real-time PCR was unable to detect, or poorly detected, virus titer reductions between treated and untreated samples described in this study.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box