Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1186/1471-2105-15-163

http://scihub22266oqcxt.onion/10.1186/1471-2105-15-163
suck pdf from google scholar
C4055234!4055234 !24884587
unlimited free pdf from europmc24884587
    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\24884587 .jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117
pmid24884587
      BMC+Bioinformatics 2014 ; 15 (ä): 163
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Population genetic analysis of bi-allelic structural variants from low-coverage sequence data with an expectation-maximization algorithm #MMPMID24884587
  • Lucas-Lledó JI ; Vicente-Salvador D ; Aguado C ; Cáceres M
  • BMC Bioinformatics 2014[May]; 15 (ä): 163 PMID24884587 show ga
  • BACKGROUND: Population genetics and association studies usually rely on a set of known variable sites that are then genotyped in subsequent samples, because it is easier to genotype than to discover the variation. This is also true for structural variation detected from sequence data. However, the genotypes at known variable sites can only be inferred with uncertainty from low coverage data. Thus, statistical approaches that infer genotype likelihoods, test hypotheses, and estimate population parameters without requiring accurate genotypes are becoming popular. Unfortunately, the current implementations of these methods are intended to analyse only single nucleotide and short indel variation, and they usually assume that the two alleles in a heterozygous individual are sampled with equal probability. This is generally false for structural variants detected with paired ends or split reads. Therefore, the population genetics of structural variants cannot be studied, unless a painstaking and potentially biased genotyping is performed first. RESULTS: We present svgem, an expectation-maximization implementation to estimate allele and genotype frequencies, calculate genotype posterior probabilities, and test for Hardy-Weinberg equilibrium and for population differences, from the numbers of times the alleles are observed in each individual. Although applicable to single nucleotide variation, it aims at bi-allelic structural variation of any type, observed by either split reads or paired ends, with arbitrarily high allele sampling bias. We test svgem with simulated and real data from the 1000 Genomes Project. CONCLUSIONS: svgem makes it possible to use low-coverage sequencing data to study the population distribution of structural variants without having to know their genotypes. Furthermore, this advance allows the combined analysis of structural and nucleotide variation within the same genotype-free statistical framework, thus preventing biases introduced by genotype imputation.
  • |*Algorithms [MESH]
  • |Alleles [MESH]
  • |Genetics, Population [MESH]
  • |Genome [MESH]
  • |Genomics/*methods [MESH]
  • |Genotype [MESH]
  • |High-Throughput Nucleotide Sequencing/*methods [MESH]
  • |Humans [MESH]
  • |Likelihood Functions [MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box