Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1016/j.jbiomech.2014.03.022

http://scihub22266oqcxt.onion/10.1016/j.jbiomech.2014.03.022
suck pdf from google scholar
C4037855!4037855!24720889
unlimited free pdf from europmc24720889    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 263.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 263.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 263.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid24720889      J+Biomech 2014 ; 47 (8): 1838-45
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Integrative Transcriptomic and Proteomic Analysis of Osteocytic Cells Exposed to Fluid Flow Reveals Novel Mechano-Sensitive Signaling Pathways #MMPMID24720889
  • Govey PM; Jacobs JM; Tilton SC; Loiselle AE; Zhang Y; Freeman WM; Waters KM; Karin NJ; Donahue HJ
  • J Biomech 2014[Jun]; 47 (8): 1838-45 PMID24720889show ga
  • Osteocytes, positioned within bone's porous structure, are subject to interstitial fluid flow upon whole bone loading. Such fluid flow is widely theorized to be a mechanical signal transduced by osteocytes, initiating a poorly understood cascade of signaling events mediating bone adaptation to mechanical load. The objective of this study was to examine the time course of flow-induced changes in osteocyte gene transcript and protein levels using high-throughput approaches. Osteocyte-like MLO-Y4 cells were subjected to 2 hours of oscillating fluid flow (1 Pa peak shear stress) and analyzed following 0, 2, 8, and 24 hours post-flow incubation. Transcriptomic microarray analysis, followed by gene ontology pathway analysis, demonstrated fluid flow regulation of genes consistent with both known and unknown metabolic and inflammatory responses in bone. Additionally, two of the more highly up-regulated gene products?chemokines Cxcl1 and Cxcl2, supported by qPCR?have not previously been reported as responsive to fluid flow. Proteomic analysis demonstrated greatest up-regulation of the ATP-producing enzyme NDK, calcium-binding Calcyclin, and G protein-coupled receptor kinase 6. Finally, an integrative pathway analysis merging fold changes in transcript and protein levels predicted signaling nodes not directly detected at the sampled time points, including transcription factors c-Myc, c-Jun, and RelA/NF-?B. These results extend our knowledge of the osteocytic response to fluid flow, most notably up-regulation of Cxcl1 and Cxcl2 as possible paracrine agents for osteoblastic and osteoclastic recruitment. Moreover, these results demonstrate the utility of integrative, high-throughput approaches in place of a traditional candidate approach for identifying novel mechano-sensitive signaling molecules.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box