Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1161/CIRCRESAHA.109.206771

http://scihub22266oqcxt.onion/10.1161/CIRCRESAHA.109.206771
suck pdf from google scholar
C2907241!2907241!20075334
unlimited free pdf from europmc20075334    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid20075334      Circ+Res 2010 ; 106 (5): 992-1003
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • TRPM7-mediated Ca2+ signals confer fibrogenesis in human Atrial Fibrillation #MMPMID20075334
  • Du J; Xie J; Zhang Z; Tsujikawa H; Fusco D; Silverman D; Liang B; Yue L
  • Circ Res 2010[Mar]; 106 (5): 992-1003 PMID20075334show ga
  • Rationale: Cardiac fibrosis contributes to pathogenesis of atrial fibrillation (AF), which is the most sustained arrhythmia and a major cause of morbidity and mortality. Although it has been suggested that Ca2+ signals are involved in fibrosis promotion, the molecular basis of Ca2+ signaling mechanisms and how Ca2+ signals contribute to fibrogenesis remain unknown. Objective: To determine the molecular mechanisms of Ca2+-permeable channel(s) in human atrial fibroblasts, and to investigate how Ca2+ signals contribute to fibrogenesis in human AF. Methods and Results: We demonstrate that the transient receptor potential melastatin related 7 (TRPM7) is the molecular basis of the major Ca2+-permeable channel in human atrial fibroblasts. Endogenous TRPM7 currents in atrial fibroblasts resemble the biophysical and pharmacological properties of heterologous expressed TRPM7. Knocking down TRPM7 by small hairpin RNA (shRNA) largely eliminates TRPM7 current and Ca2+ influx in atrial fibroblasts. More importantly, atrial fibroblasts from AF patients show a striking upregulation of both TRPM7 currents and Ca2+ influx and are more prone to myofibroblast differentiation, presumably due to the enhanced expression of TRPM7. TRPM7-shRNA markedly reduced basal AF fibroblast differentiation. Transforming growth factor ?1 (TGF-?1), the major stimulator of atrial fibrosis, requires TRPM7-mediated Ca2+ signal for its effect on fibroblast proliferation and differentiation. Furthermore, TGF-?1 induced differentiation of cultured human atrial fibroblasts is well correlated with an increase of TRPM7 expression induced by TGF-?1. Conclusions: Our results establish that TRPM7 is the major Ca2+-permeable channel in human atrial fibroblasts, and likely plays an essential role in TGF-?1-elicited fibrogenesis in human AF.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box