Polycaprolactone/Polyethylene Glycol/Hydroxypropylmethylcellulose Blends: Tailoring Thermomechanical and Rheological Properties for Injection-Molded Capsules for Colon-Targeted Delivery Applications #MMPMID41359981
Mottola S; Liparoti S; Miranda A; De Marco I
ACS Appl Bio Mater 2025[Dec]; ? (?): ? PMID41359981show ga
Colon-targeted delivery systems offer a promising approach for local drug administration. In this study, we developed a customized polymeric blend for this purpose, combining polyethylene glycol (PEG), polycaprolactone (PCL), and hydroxypropyl methylcellulose (HPMC). Although PEG and PCL have been extensively studied, the inclusion of HPMC in such blends remains underexplored; however, its use in this context shows significant potential due to its pH sensitivity. To achieve this, various formulations were tested to optimize the thermomechanical and release characteristics of capsules produced through injection molding. Three blends containing 22, 24, and 34 wt% HPMC were processed and analyzed using rheological methods, ATR-FTIR, TGA, DSC, SEM, and in vitro release tests with methylene blue as a model compound. Simulated pH-release tests (pH 2.5, 5, and 6.8) showed minimal release in gastric and intestinal environments, with controlled and sustained release under colonic pH conditions. It was also observed that the initial HPMC content affects the release rate of the model compound. Specifically, when the blend contains 34% HPMC, approximately 38% of the compound is released within 12 h and 73% within 24 h. These results highlight the potential of pH-sensitive polymer blends as effective platforms for colon-targeted drug delivery. A model illustrating how the release rate depends on pH value and HPMC amount was also proposed and validated. The process was considered to happen in two stages: initially, the release medium penetrates the capsule and solubilizes the model compound; then, the model compound is released into the surrounding environment.