Coagulation Risk Prediction in Patients With Liver Failure: Integrated Meta-Analysis and Machine Learning Model Study #MMPMID41359948
Wang H; He T; Ren L; Zhang T
JMIR Med Inform 2025[Dec]; 13 (?): e76348 PMID41359948show ga
BACKGROUND: Liver failure often results in significant coagulation dysfunction, which is a major complication. Artificial liver support systems (ALSS) have been used to ameliorate coagulation parameters, but the dynamic nature of these improvements and the development of predictive models remain insufficiently explored. OBJECTIVE: This study aimed to evaluate the effects of ALSS on coagulation function and to develop a dynamic prediction model using machine learning techniques to predict the improvement trends of coagulation parameters. METHODS: A systematic search was conducted in PubMed, Embase, and other databases to identify relevant studies, resulting in 18 studies comprising 1771 patients. A meta-analysis was performed to assess the impact of ALSS on coagulation parameters, including international normalized ratio (INR), prothrombin time (PT), activated partial thromboplastin time (APTT), and fibrinogen levels. In addition, clinical data from the Medical Information Mart for Intensive Care database were used to construct prediction models using logistic regression, extreme gradient boosting, random forest, and long short-term memory networks. RESULTS: Meta-analysis results showed that ALSS significantly improved INR, PT, APTT, and fibrinogen levels (all P<.05), with the treatment efficacy varying by modality. Among the machine learning models, the random forest model demonstrated the best performance, achieving an area under the curve of 92.12%. Dynamic INR was identified as the key predictor for coagulation abnormalities. CONCLUSIONS: This study systematically evaluated the effects of ALSS on coagulation function in patients with liver failure, demonstrating significant improvements in key parameters such as INR, PT, and APTT, with efficacy varying across different treatment modalities. Simultaneously, a machine learning model built using intensive care unit clinical data exhibited strong predictive capability for identifying the risk of coagulation dysfunction, particularly useful in supporting early-stage clinical recognition of high-risk patients and guiding personalized coagulation management strategies. It is important to emphasize that this model is positioned as a dynamic risk alert and assessment tool, intended to assist clinical baseline evaluation and nursing interventions, rather than serving as direct validation of ALSS therapeutic efficacy.