Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1038/s41598-025-30774-z

http://scihub22266oqcxt.onion/10.1038/s41598-025-30774-z
suck pdf from google scholar
41339466!?!41339466

Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=41339466&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215

suck abstract from ncbi

pmid41339466      Sci+Rep 2025 ; ? (?): ?
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Deep learning-based object detection of restorative dental instruments with potential implications for workflow automation and infection control in dental supply units #MMPMID41339466
  • Poomrittigul S; Mittong S; Thanathornwong B; Suebnukarn S
  • Sci Rep 2025[Dec]; ? (?): ? PMID41339466show ga
  • This study presents a proof-of-concept deep learning approach for automated detection and classification of restorative dental instruments on standardized trays, aiming to support workflow automation and infection control in dental supply units. A dataset comprising 1,000 images and 14,000 annotated instances of restorative dental instruments across 14 categories was developed. The YOLOv8 model was trained and evaluated on this dataset using standard object detection metrics, including precision, recall, and mean average precision at IoU thresholds 0.5 (mAP@0.5) and 0.5:0.95 (mAP@[0.5:0.95]). To assess model advancement, YOLOv8 performance was compared against its predecessors, YOLOv5, YOLOv6, and YOLOv7, under identical experimental settings. A session-level data split was implemented as the primary evaluation to minimize data leakage and provide a realistic estimate of generalization across unseen tray configurations. The YOLOv8 model achieved highest mean average precision mAP@0.5 of 95.9% and mAP@[0.5:0.95] of 80.9%, demonstrating robust detection capability under both standard and stringent evaluation thresholds. Across instrument categories, YOLOv8 demonstrated precision ranging from 90.3% to 100% and recall from 80.6 to 98.5%. The findings demonstrate the feasibility of using YOLOv8 for automated restorative dental instrument detection as an early-stage tool for improving supply unit efficiency. While results indicate high detection accuracy and robustness, further validation in diverse clinical environments is needed. Future deployment should incorporate human-in-the-loop verification, audit trails, and error escalation mechanisms to ensure safe and accountable AI-assisted workflows.
  • ?


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box