Deprecated: Implicit conversion from float 235.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 235.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 235.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 235.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 235.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 235.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 235.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 269.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\40590163.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 Adv+Mater 2025 ; ä (ä): e2503183 Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
Bioinspired Hyperboloid Mechanical Metamaterial for Shock Absorption and Strain Regulation in Cartilage Remodeling #MMPMID40590163
Chen J; Sun Q; Hou Y; Liu S; Wang L; Deng E; Meng L; Li X; Chen G; Wang J
Adv Mater 2025[Jul]; ä (ä): e2503183 PMID40590163show ga
Inspired by the shock-absorbing capabilities of natural insect elytra, a hyperboloid lattice metamaterial exhibiting unique compression-torsion coupling behavior is designed and fabricated. This structure efficiently converts dynamic loads into strain energy, enabling high-strain elastic deformation. The hyperboloid lattice is integrated with a classic reticulation framework and filled with GelMA hydrogel, creating a tailored osteochondral scaffold with mechanical properties that closely match those of joint tissue. Under dynamic mechanical culture, compression-torsion stimulation in the hyperboloid zone induced high-strain elastic deformation, promoting chondrogenic differentiation of stem cells, while the more rigid reticulation zone, experiencing minimal deformation, facilitated osteogenic differentiation of stem cells. In a rabbit osteochondral defect model, hyperboloid-based shock-absorption scaffolds significantly enhanced the integrative repair of both cartilage and subchondral bone via the NF-kappaB and calcium signaling pathways. The incorporation of the hyperboloid metamaterial, with its shock-absorbing and strain-regulating properties, demonstrates great potential for developing adaptable mechanical scaffolds for cartilage remodeling.