Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.2196/52257

http://scihub22266oqcxt.onion/10.2196/52257
suck pdf from google scholar
39088256!11327621!39088256
unlimited free pdf from europmc39088256    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 243.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid39088256      JMIR+Hum+Factors 2024 ; 11 (ä): e52257
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Understanding the Use of Mobility Data in Disasters: Exploratory Qualitative Study of COVID-19 User Feedback #MMPMID39088256
  • Chan JL; Tsay S; Sambara S; Welch SB
  • JMIR Hum Factors 2024[Aug]; 11 (ä): e52257 PMID39088256show ga
  • BACKGROUND: Human mobility data have been used as a potential novel data source to guide policies and response planning during the COVID-19 global pandemic. The COVID-19 Mobility Data Network (CMDN) facilitated the use of human mobility data around the world. Both researchers and policy makers assumed that mobility data would provide insights to help policy makers and response planners. However, evidence that human mobility data were operationally useful and provided added value for public health response planners remains largely unknown. OBJECTIVE: This exploratory study focuses on advancing the understanding of the use of human mobility data during the early phase of the COVID-19 pandemic. The study explored how researchers and practitioners around the world used these data in response planning and policy making, focusing on processing data and human factors enabling or hindering use of the data. METHODS: Our project was based on phenomenology and used an inductive approach to thematic analysis. Transcripts were open-coded to create the codebook that was then applied by 2 team members who blind-coded all transcripts. Consensus coding was used for coding discrepancies. RESULTS: Interviews were conducted with 45 individuals during the early period of the COVID-19 pandemic. Although some teams used mobility data for response planning, few were able to describe their uses in policy making, and there were no standardized ways that teams used mobility data. Mobility data played a larger role in providing situational awareness for government partners, helping to understand where people were moving in relation to the spread of COVID-19 variants and reactions to stay-at-home orders. Interviewees who felt they were more successful using mobility data often cited an individual who was able to answer general questions about mobility data; provide interactive feedback on results; and enable a 2-way communication exchange about data, meaning, value, and potential use. CONCLUSIONS: Human mobility data were used as a novel data source in the COVID-19 pandemic by a network of academic researchers and practitioners using privacy-preserving and anonymized mobility data. This study reflects the processes in analyzing and communicating human mobility data, as well as how these data were used in response planning and how the data were intended for use in policy making. The study reveals several valuable use cases. Ultimately, the role of a data translator was crucial in understanding the complexities of this novel data source. With this role, teams were able to adapt workflows, visualizations, and reports to align with end users and decision makers while communicating this information meaningfully to address the goals of responders and policy makers.
  • |*COVID-19/epidemiology[MESH]
  • |*Qualitative Research[MESH]
  • |Humans[MESH]
  • |Pandemics[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box