Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1186/s12920-022-01222-y

http://scihub22266oqcxt.onion/10.1186/s12920-022-01222-y
suck pdf from google scholar
35421970!9008611!35421970
unlimited free pdf from europmc35421970    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid35421970      BMC+Med+Genomics 2022 ; 15 (1): 83
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Co-expression analysis to identify key modules and hub genes associated with COVID-19 in platelets #MMPMID35421970
  • Alarabi AB; Mohsen A; Mizuguchi K; Alshbool FZ; Khasawneh FT
  • BMC Med Genomics 2022[Apr]; 15 (1): 83 PMID35421970show ga
  • Corona virus disease 2019 (COVID-19) increases the risk of cardiovascular occlusive/thrombotic events and is linked to poor outcomes. The underlying pathophysiological processes are complex, and remain poorly understood. To this end, platelets play important roles in regulating the cardiovascular system, including via contributions to coagulation and inflammation. There is ample evidence that circulating platelets are activated in COVID-19 patients, which is a primary driver of the observed thrombotic outcome. However, the comprehensive molecular basis of platelet activation in COVID-19 disease remains elusive, which warrants more investigation. Hence, we employed gene co-expression network analysis combined with pathways enrichment analysis to further investigate the aforementioned issues. Our study revealed three important gene clusters/modules that were closely related to COVID-19. These cluster of genes successfully identify COVID-19 cases, relative to healthy in a separate validation data set using machine learning, thereby validating our findings. Furthermore, enrichment analysis showed that these three modules were mostly related to platelet metabolism, protein translation, mitochondrial activity, and oxidative phosphorylation, as well as regulation of megakaryocyte differentiation, and apoptosis, suggesting a hyperactivation status of platelets in COVID-19. We identified the three hub genes from each of three key modules according to their intramodular connectivity value ranking, namely: COPE, CDC37, CAPNS1, AURKAIP1, LAMTOR2, GABARAP MT-ND1, MT-ND5, and MTRNR2L12. Collectively, our results offer a new and interesting insight into platelet involvement in COVID-19 disease at the molecular level, which might aid in defining new targets for treatment of COVID-19-induced thrombosis.
  • |*Blood Platelets/metabolism[MESH]
  • |*COVID-19/genetics[MESH]
  • |Apoptosis[MESH]
  • |Gene Expression Profiling/methods[MESH]
  • |Gene Regulatory Networks[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box