Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 251.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 251.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\35100418.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 Nucleic+Acids+Res 2022 ; 50 (8): e45 Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
AggMapNet: enhanced and explainable low-sample omics deep learning with feature-aggregated multi-channel networks #MMPMID35100418
Shen WX; Liu Y; Chen Y; Zeng X; Tan Y; Jiang YY; Chen YZ
Nucleic Acids Res 2022[May]; 50 (8): e45 PMID35100418show ga
Omics-based biomedical learning frequently relies on data of high-dimensions (up to thousands) and low-sample sizes (dozens to hundreds), which challenges efficient deep learning (DL) algorithms, particularly for low-sample omics investigations. Here, an unsupervised novel feature aggregation tool AggMap was developed to Aggregate and Map omics features into multi-channel 2D spatial-correlated image-like feature maps (Fmaps) based on their intrinsic correlations. AggMap exhibits strong feature reconstruction capabilities on a randomized benchmark dataset, outperforming existing methods. With AggMap multi-channel Fmaps as inputs, newly-developed multi-channel DL AggMapNet models outperformed the state-of-the-art machine learning models on 18 low-sample omics benchmark tasks. AggMapNet exhibited better robustness in learning noisy data and disease classification. The AggMapNet explainable module Simply-explainer identified key metabolites and proteins for COVID-19 detections and severity predictions. The unsupervised AggMap algorithm of good feature restructuring abilities combined with supervised explainable AggMapNet architecture establish a pipeline for enhanced learning and interpretability of low-sample omics data.