Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1007/s11481-021-10029-0

http://scihub22266oqcxt.onion/10.1007/s11481-021-10029-0
suck pdf from google scholar
34687399!8536479!34687399
unlimited free pdf from europmc34687399    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid34687399      J+Neuroimmune+Pharmacol 2021 ; 16 (4): 722-728
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • SARS-CoV-2 Spike Protein Disrupts Blood-Brain Barrier Integrity via RhoA Activation #MMPMID34687399
  • DeOre BJ; Tran KA; Andrews AM; Ramirez SH; Galie PA
  • J Neuroimmune Pharmacol 2021[Dec]; 16 (4): 722-728 PMID34687399show ga
  • The SARS-CoV-2 spike protein has been shown to disrupt blood-brain barrier (BBB) function, but its pathogenic mechanism of action is unknown. Whether angiotensin converting enzyme 2 (ACE2), the viral binding site for SARS-CoV-2, contributes to the spike protein-induced barrier disruption also remains unclear. Here, a 3D-BBB microfluidic model was used to interrogate mechanisms by which the spike protein may facilitate barrier dysfunction. The spike protein upregulated the expression of ACE2 in response to laminar shear stress. Moreover, interrogating the role of ACE2 showed that knock-down affected endothelial barrier properties. These results identify a possible role of ACE2 in barrier homeostasis. Analysis of RhoA, a key molecule in regulating endothelial cytoskeleton and tight junction complex dynamics, reveals that the spike protein triggers RhoA activation. Inhibition of RhoA with C3 transferase rescues its effect on tight junction disassembly. Overall, these results indicate a possible means by which the engagement of SARS-CoV-2 with ACE2 facilitates disruption of the BBB via RhoA activation. Understanding how SARS-CoV-2 dysregulates the BBB may lead to strategies to prevent the neurological deficits seen in COVID-19 patients.
  • |*COVID-19[MESH]
  • |*Spike Glycoprotein, Coronavirus[MESH]
  • |Blood-Brain Barrier/metabolism[MESH]
  • |Humans[MESH]
  • |Protein Binding[MESH]
  • |SARS-CoV-2[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box