Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1016/j.rechem.2021.100210

http://scihub22266oqcxt.onion/10.1016/j.rechem.2021.100210
suck pdf from google scholar
34642620!8500476!34642620
unlimited free pdf from europmc34642620    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid34642620      Results+Chem 2021 ; ä (ä): 100210
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Development of a spectroscopic technique that enables the saliva based detection of COVID-19 at safe distances #MMPMID34642620
  • Lukose J; Barik A; Unnikrishnan VK; George SD; Kartha VB; Chidangil S
  • Results Chem 2021[Oct]; ä (ä): 100210 PMID34642620show ga
  • Research activities are in full swing globally to translate the use of saliva as a non-invasive and highly potential specimen for clinical diagnostics, particularly for COVID-19 detection. Being comprised of a pool of biomarkers also enriched with ACE-2 receptors, saliva can provide vital information regarding the state of the human body. Advancements in biophotonics tools for saliva investigation may offer promise for developing rapid, highly objective, optical modalities for COVID- 19 detection. This article presents concept/design study, which propose the use of Raman/laser induced fluorescence spectroscopic device that have the potential for viral detection via saliva from a safer distance. Noticeable changes of biomarkers present in saliva in response to viral infection can reflect the pathological state, thus can altogether affect the Raman spectral pattern. Monitoring these spectral patterns of saliva, which are further enhanced by using cost effective and reproducible Surface Enhanced Raman Spectroscopy substrates can be a viable option for sensitive and non-invasive viral detection. The spectral information acquired from the optical device can be processed using various multivariate statistical analytical tools, which ultimately facilitate effective viral detection in few minutes. This method doesn't demand the necessity of qualified professionals and sample processing with reagents unlike in RT-PCR test. The proposed optical device can be further modified into a portable form, which can be easily transported for field applications. The stand-off observation, contactless and highly non-invasive technique can be of paramount importance in the current context, where the safer screening of a large population for viral infection by maintaining social distances is a necessity. The proposed stand-off spectroscopic technique can also address the major concern of nosocomial viral transmission amongst healthcare workers during sample collection in a pandemic scenario.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box