Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=34415311&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215
Natural language processing enabling COVID-19 predictive analytics to support data-driven patient advising and pooled testing #MMPMID34415311
Meystre SM; Heider PM; Kim Y; Davis M; Obeid J; Madory J; Alekseyenko AV
J Am Med Inform Assoc 2021[Dec]; 29 (1): 12-21 PMID34415311show ga
OBJECTIVE: The COVID-19 (coronavirus disease 2019) pandemic response at the Medical University of South Carolina included virtual care visits for patients with suspected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The telehealth system used for these visits only exports a text note to integrate with the electronic health record, but structured and coded information about COVID-19 (eg, exposure, risk factors, symptoms) was needed to support clinical care and early research as well as predictive analytics for data-driven patient advising and pooled testing. MATERIALS AND METHODS: To capture COVID-19 information from multiple sources, a new data mart and a new natural language processing (NLP) application prototype were developed. The NLP application combined reused components with dictionaries and rules crafted by domain experts. It was deployed as a Web service for hourly processing of new data from patients assessed or treated for COVID-19. The extracted information was then used to develop algorithms predicting SARS-CoV-2 diagnostic test results based on symptoms and exposure information. RESULTS: The dedicated data mart and NLP application were developed and deployed in a mere 10-day sprint in March 2020. The NLP application was evaluated with good accuracy (85.8% recall and 81.5% precision). The SARS-CoV-2 testing predictive analytics algorithms were configured to provide patients with data-driven COVID-19 testing advices with a sensitivity of 81% to 92% and to enable pooled testing with a negative predictive value of 90% to 91%, reducing the required tests to about 63%. CONCLUSIONS: SARS-CoV-2 testing predictive analytics and NLP successfully enabled data-driven patient advising and pooled testing.