Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1016/j.cmpb.2021.106336

http://scihub22266oqcxt.onion/10.1016/j.cmpb.2021.106336
suck pdf from google scholar
34403841!8352851!34403841
unlimited free pdf from europmc34403841    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid34403841      Comput+Methods+Programs+Biomed 2021 ; 209 (ä): 106336
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Prediction of COVID Criticality Score with Laboratory, Clinical and CT Images using Hybrid Regression Models #MMPMID34403841
  • Perumal V; Narayanan V; Rajasekar SJS
  • Comput Methods Programs Biomed 2021[Sep]; 209 (ä): 106336 PMID34403841show ga
  • BACKGROUND AND OBJECTIVE: Rapid and precise diagnosis of COVID-19 is very critical in hotspot regions. The main aim of this proposed work is to investigate the baseline, laboratory and CT features of COVID-19 affected patients of two groups (Early and Critical stages). The detection model for COVID-19 is built depending upon the manifestations that define the severity of the disease. METHODS: The CT scan images are fed into the various deep learning, machine learning and hybrid learning models to mine the necessary features and predict CT Score. The predicted CT score along with other clinical, laboratory and CT scan image features are then passed to train the various Regression models for predicting the COVID Criticality (CC) Score. These baseline, laboratory and CT features of COVID-19 are reduced using Statistical analysis and Univariate logistic regression analysis. RESULTS: When analysing the prediction of CT scores using images alone, AlexNet+Lasso yields better outcome with regression score of 0.9643 and RMSE of 0.0023 when compared with Decision tree (RMSE of 0.0034; Regression score of 0.9578) and GRU (RMSE of 0.1253; regression score of 0.9323). When analysing the prediction of CC scores using CT scores and other baseline, laboratory and CT features, VGG-16+Linear Regression yields better results with regression score of 0.9911 and RMSE of 0.0002 when compared with Linear SVR (RMSE of 0.0006; Regression score of 0.9911) and LSTM (RMSE of 0.0005; Regression score of 0.9877). The correlation analysis is performed to identify the significance of utilizing other features in prediction of CC Score. The correlation coefficient of CT scores with actual value is 0.93 and 0.92 for Early stage group and Critical stage group respectively. The correlation coefficient of CC scores with actual value is 0.96 for Early stage group and 0.95 for Critical stage group.The classification of COVID-19 patients are carried out with the help of predicted CC Scores. CONCLUSIONS: This proposed work is carried out in the motive of helping radiologists in faster categorization of COVID patients as Early or Severe staged using CC Scores. The automated prediction of COVID Criticality Score using our diagnostic model can help radiologists and physicians save time for carrying out further treatment and procedures.
  • |*COVID-19[MESH]
  • |*Laboratories[MESH]
  • |Humans[MESH]
  • |Machine Learning[MESH]
  • |SARS-CoV-2[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box