Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1016/j.meegid.2021.105020

http://scihub22266oqcxt.onion/10.1016/j.meegid.2021.105020
suck pdf from google scholar
34343725!8325559!34343725
unlimited free pdf from europmc34343725    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid34343725      Infect+Genet+Evol 2021 ; 94 (ä): 105020
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Circulating miRNAs: Potential diagnostic role for coronavirus disease 2019 (COVID-19) #MMPMID34343725
  • Fayyad-Kazan M; Makki R; Skafi N; El Homsi M; Hamade A; El Majzoub R; Hamade E; Fayyad-Kazan H; Badran B
  • Infect Genet Evol 2021[Oct]; 94 (ä): 105020 PMID34343725show ga
  • Nowadays, the coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a major global health problem. Intensive efforts are being employed to better understand this pathology and develop strategies enabling its early diagnosis and efficient treatment. In this study, we compared the signature of circulating miRNAs in plasma of COVID-19 patients versus healthy donors. MiRCURY LNA miRNA miRNome qPCR Panels were performed for miRNA signature characterization. Individual quantitative real-time PCR (qRT-PCR) was carried out to validate miRNome qPCR results. Receiver-operator characteristic (ROC) curve analysis was applied to assess the diagnostic accuracy of the most significantly deregulated miRNA(s) as potential diagnostic biomarker(s). Eight miRNAs were identified to be differentially expressed with miR-17-5p and miR-142-5p being down-regulated whilst miR-15a-5p, miR-19a-3p, miR-19b-3p, miR-23a-3p, miR-92a-3p and miR-320a being up-regulated in SARS-CoV-2-infected patients. ROC curve analyses revealed an AUC (Areas Under the ROC Curve) of 0.815 (P = 0.031), 0.875 (P = 0.012), and 0.850 (P = 0.025) for miR-19a-3p, miR-19b-3p, and miR-92a-3p, respectively. Combined ROC analyses using these 3 miRNAs showed a greater AUC of 0.917 (P = 0.0001) indicating a robust diagnostic value of these 3 miRNAs. These results suggest that plasma miR-19a-3p, miR-19b-3p, and miR-92a-3p expression levels could serve as potential diagnostic biomarker and/or a putative therapeutic target during SARS-CoV-2-infection.
  • |Adult[MESH]
  • |Biomarkers/blood[MESH]
  • |COVID-19/*blood/diagnosis/epidemiology/physiopathology[MESH]
  • |Circulating MicroRNA/*blood/genetics[MESH]
  • |Down-Regulation[MESH]
  • |Female[MESH]
  • |Humans[MESH]
  • |Male[MESH]
  • |Middle Aged[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box