Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1016/j.compbiomed.2021.104669

http://scihub22266oqcxt.onion/10.1016/j.compbiomed.2021.104669
suck pdf from google scholar
34320442!8294073!34320442
unlimited free pdf from europmc34320442    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 227.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 227.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 227.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 227.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 227.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 227.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid34320442      Comput+Biol+Med 2021 ; 136 (ä): 104669
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Decrypting the role of predicted SARS-CoV-2 miRNAs in COVID-19 pathogenesis: A bioinformatics approach #MMPMID34320442
  • Rahaman M; Komanapalli J; Mukherjee M; Byram PK; Sahoo S; Chakravorty N
  • Comput Biol Med 2021[Sep]; 136 (ä): 104669 PMID34320442show ga
  • Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is a highly transmissible virus causing the ongoing global pandemic, COVID-19. Evidence suggests that viral and host microRNAs play pivotal roles in progression of such infections. The decisive impact of viral miRNAs and their putative targets in modulating the transcriptomic profile of its host, however remains unexplored. We hypothesized that the SARS-CoV-2 derived miRNAs can potentially play a contributory role in its pathogenicity and aid in its survival. A series of computational tools predicted 34 SARS-CoV-2 encoded miRNAs and their putative targets in the host. Immune and apoptotic pathways were identified as most enriched pathways. Further investigation using a dataset of SARS-CoV-2 infected cells (available from public repository- GSE150392) revealed that 46 genes related to immune and apoptosis-related functions were deregulated. Of these 46 genes, 42 genes were identified to be significantly up-regulated and 4 genes were down-regulated. In silico analysis revealed all of the these significantly down-regulated genes to be putative targets of 9 out of 34 of our predicted viral miRNAs. Overall, 123 out of 324 genes that are differentially regulated in SARS-CoV2 infected cells, and also identified as putative targets of viral miRNAs, were found to be significantly down-regulated. KEGG pathway analysis using these genes revealed p53 signaling as the most enriched pathway - a pathway that is known to influence immune responses. This study thus provides the theoretical foundation for the underlying molecular mechanisms involved in progression of viral pathogenesis.
  • |*COVID-19[MESH]
  • |*MicroRNAs/genetics[MESH]
  • |Computational Biology[MESH]
  • |Humans[MESH]
  • |RNA, Viral[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box