Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1007/s11468-020-01343-z

http://scihub22266oqcxt.onion/10.1007/s11468-020-01343-z
suck pdf from google scholar
34131417!8192045!34131417
unlimited free pdf from europmc34131417    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 219.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 219.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 219.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 219.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid34131417      Plasmonics 2021 ; 16 (6): 2117-2124
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Fano Resonance-Based Blood Plasma Monitoring and Sensing using Plasmonic Nanomatryoshka #MMPMID34131417
  • Pathania P; Shishodia MS
  • Plasmonics 2021[]; 16 (6): 2117-2124 PMID34131417show ga
  • The fast label-free detection of specific antibodies and their concentration in blood plasma is useful for many applications, e.g., in Covid-19 patients. The change in biophysical properties like the refractive index of blood plasma due to the production of antibodies during infection may be very helpful in estimating the level and intensity of infection and subsequent treatment based on blood plasma therapy. In this article, Fano resonance-based refractive index sensor using plasmonic nanomatryoshka is proposed for blood plasma sensing. The interaction between hybridized modes (bright and dark modes) in optimized nanomatryoshka leads to Fano resonance, which by virtue of steeper dispersion can confine the light more efficiently compared with Lorentzian resonance. We propose the excitation of Fano resonances in sub 100-nm size nanomatryoshka based on newly emerging plasmonic materials ZrN and HfN, and one of the most widely used conventional plasmonic material, Au. Fano resonance-based plasmonic sensors leads to sensitivity = 188.5 nm/RIU, 242.5 nm/RIU, and 244.9 nm/RIU for Au, ZrN, and HfN, respectively. The corresponding figure of merit (nm/RIU) is ~ 3.5 x 10(3), 3.1 x 10(3), and 2.8 x 10(3) for Au, ZrN, and HfN, respectively. Present theoretical analysis shows that refractive index sensors with high sensitivity and figure of merit are feasible using Fano modes of plasmonic nanomatryoshka.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box