Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1016/j.envpol.2021.117454

http://scihub22266oqcxt.onion/10.1016/j.envpol.2021.117454
suck pdf from google scholar
34062435!8164380!34062435
unlimited free pdf from europmc34062435    free
PDF from PMC    free
html from PMC    free

Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=34062435&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215

suck abstract from ncbi


Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 265.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 265.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid34062435      Environ+Pollut 2021 ; 284 (ä): 117454
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Potential health risks of inhaled toxic elements and risk sources during different COVID-19 lockdown stages in Linfen, China #MMPMID34062435
  • Wang Y; Liu B; Zhang Y; Dai Q; Song C; Duan L; Guo L; Zhao J; Xue Z; Bi X; Feng Y
  • Environ Pollut 2021[Sep]; 284 (ä): 117454 PMID34062435show ga
  • Levels of toxic elements in ambient PM(2.5) were measured from 29 October 2019 to 30 March 2020 in Linfen, China, to assess the health risks they posed and to identify critical risk sources during different periods of the COVID-19 lockdown and haze episodes using positive matrix factorization (PMF) and a health-risk assessment model. The mean PM(2.5) concentration during the study period was 145 mug/m(3), and the 10 investigated toxic elements accounted for 0.31% of the PM(2.5) mass. The total non-cancer risk (HI) and total cancer risk (TCR) of the selected toxic elements exceed the US EPA limits for children and adults. The HI for children was 2.3 times that for adults for all periods, which is likely due to the high inhalation rate per unit body weight for children. While the TCR for adults was 1.7 times that of children, which is mainly attributed to potential longer exposure duration for adults. The HI and TCR of the toxic elements during full lockdown were reduced by 66% and 58%, respectively, compared to their pre-lockdown levels. The HI and TCR were primarily attributable to Mn and As, respectively. Health risks during haze episodes were significantly higher than the average levels during COVID-19 lockdowns, though the HI and TCR of the selected toxic elements during full-lockdown haze episodes were 68% and 17% lower, respectively, than were the levels during pre-lockdown haze episodes. During the study period, fugitive dust and steel-related smelting were the highest contributors to HI and TCR, respectively, and decreased in these emission sources contributed the most to the lower health risks observed during the full lockdown. There, the control of these sources is critical to effectively reduce public health risks.
  • |*Air Pollutants/analysis[MESH]
  • |*COVID-19[MESH]
  • |Adult[MESH]
  • |Child[MESH]
  • |China[MESH]
  • |Communicable Disease Control[MESH]
  • |Environmental Monitoring[MESH]
  • |Humans[MESH]
  • |Particulate Matter/analysis[MESH]
  • |SARS-CoV-2[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box