Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1016/j.jbi.2021.103821

http://scihub22266oqcxt.onion/10.1016/j.jbi.2021.103821
suck pdf from google scholar
34052441!8159673!34052441
unlimited free pdf from europmc34052441    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 247.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 247.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 247.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 247.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 247.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 280.79999999999995 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid34052441      J+Biomed+Inform 2021 ; 119 (ä): 103821
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Machine learning enabled identification of potential SARS-CoV-2 3CLpro inhibitors based on fixed molecular fingerprints and Graph-CNN neural representations #MMPMID34052441
  • Haneczok J; Delijewski M
  • J Biomed Inform 2021[Jul]; 119 (ä): 103821 PMID34052441show ga
  • AIM: Rapidly developing AI and machine learning (ML) technologies can expedite therapeutic development and in the time of current pandemic their merits are particularly in focus. The purpose of this study was to explore various ML approaches for molecular property prediction and illustrate their utility for identifying potential SARS-CoV-2 3CLpro inhibitors. MATERIALS AND METHODS: We perform a series of drug discovery screenings based on supervised ML models operating in different ways on molecular representations, encompassing shallow learning methods based on fixed molecular fingerprints, Graph Convolutional Neural Network (Graph-CNN) with its self-learned molecular representations, as well as ML methods based on combining fixed and Graph-CNN learned representations. RESULTS: Results of our ML models are compared both with respect to the aggregated predictive performance in terms of ROC-AUC based on the scaffold splits, as well as on the granular level of individual predictions, corresponding to the top ranked repurposing candidates. This comparison reveals both certain characteristic homogeneity regarding chemical and pharmacological classification, with a prevalence of sulfonamides and anticancer drugs, as well as identifies novel groups of potential drug candidates against COVID-19. CONCLUSIONS: A series of ML approaches for molecular property prediction enables drug discovery screenings, illustrating the utility for COVID-19. We show that the obtained results correspond well with the already published research on COVID-19 treatment, as well as provide novel insights on potential antiviral characteristics inferred from in vitro data.
  • |*COVID-19 Drug Treatment[MESH]
  • |*SARS-CoV-2[MESH]
  • |Humans[MESH]
  • |Machine Learning[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box