Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1016/j.scitotenv.2021.147947

http://scihub22266oqcxt.onion/10.1016/j.scitotenv.2021.147947
suck pdf from google scholar
34051491!8141262!34051491
unlimited free pdf from europmc34051491    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 235.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 235.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 235.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 235.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid34051491      Sci+Total+Environ 2021 ; 789 (ä): 147947
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Data-driven estimation of COVID-19 community prevalence through wastewater-based epidemiology #MMPMID34051491
  • Li X; Kulandaivelu J; Zhang S; Shi J; Sivakumar M; Mueller J; Luby S; Ahmed W; Coin L; Jiang G
  • Sci Total Environ 2021[Oct]; 789 (ä): 147947 PMID34051491show ga
  • Wastewater-based epidemiology (WBE) has been regarded as a potential tool for the prevalence estimation of coronavirus disease 2019 (COVID-19) in the community. However, the application of the conventional back-estimation approach is currently limited due to the methodological challenges and various uncertainties. This study systematically performed meta-analysis for WBE datasets and investigated the use of data-driven models for the COVID-19 community prevalence in lieu of the conventional WBE back-estimation approach. Three different data-driven models, i.e. multiple linear regression (MLR), artificial neural network (ANN), and adaptive neuro fuzzy inference system (ANFIS) were applied to the multi-national WBE dataset. To evaluate the robustness of these models, predictions for sixteen scenarios with partial inputs were compared against the actual prevalence reports from clinical testing. The performance of models was further validated using unseen data (data sets not included for establishing the model) from different stages of the COVID-19 outbreak. Generally, ANN and ANFIS models showed better accuracy and robustness over MLR models. Air and wastewater temperature played a critical role in the prevalence estimation by data-driven models, especially MLR models. With unseen datasets, ANN model reasonably estimated the prevalence of COVID-19 (cumulative cases) at the initial phase and forecasted the upcoming new cases in 2-4 days at the post-peak phase of the COVID-19 outbreak. This study provided essential information about the feasibility and accuracy of data-driven estimation of COVID-19 prevalence through the WBE approach.
  • |*COVID-19[MESH]
  • |*Wastewater-Based Epidemiological Monitoring[MESH]
  • |Humans[MESH]
  • |Prevalence[MESH]
  • |SARS-CoV-2[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box