Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1016/j.arcontrol.2021.04.014

http://scihub22266oqcxt.onion/10.1016/j.arcontrol.2021.04.014
suck pdf from google scholar
34040494!8133409!34040494
unlimited free pdf from europmc34040494    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 243.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid34040494      Annu+Rev+Control 2021 ; 52 (ä): 495-507
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Multitask learning and nonlinear optimal control of the COVID-19 outbreak: A geometric programming approach #MMPMID34040494
  • Hayhoe M; Barreras F; Preciado VM
  • Annu Rev Control 2021[]; 52 (ä): 495-507 PMID34040494show ga
  • We propose a multitask learning approach to learn the parameters of a compartmental discrete-time epidemic model from various data sources and use it to design optimal control strategies of human-mobility restrictions that both curb the epidemic and minimize the economic costs associated with implementing non-pharmaceutical interventions. We develop an extension of the SEIR epidemic model that captures the effects of changes in human mobility on the spread of the disease. The parameters of the model are learned using a multitask learning approach that leverages both data on the number of deaths across a set of regions, and cellphone data on individuals' mobility patterns specific to each region. Using this model, we propose a nonlinear optimal control problem aiming to find the optimal mobility-based intervention strategy that curbs the spread of the epidemic while obeying a budget on the economic cost incurred. We also show that the solution to this nonlinear optimal control problem can be efficiently found, in polynomial time, using tools from geometric programming. Furthermore, in the absence of a straightforward mapping from human mobility data to economic costs, we propose a practical method by which a budget on economic losses incurred may be chosen to eliminate excess deaths due to over-utilization of hospital resources. Our results are demonstrated with numerical simulations using real data from the COVID-19 pandemic in the Philadelphia metropolitan area.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box