Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 267.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\33961823.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 Cell+Rep 2021 ; 35 (6): 109091 Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
METTL3 regulates viral m6A RNA modification and host cell innate immune responses during SARS-CoV-2 infection #MMPMID33961823
Li N; Hui H; Bray B; Gonzalez GM; Zeller M; Anderson KG; Knight R; Smith D; Wang Y; Carlin AF; Rana TM
Cell Rep 2021[May]; 35 (6): 109091 PMID33961823show ga
It is urgent and important to understand the relationship of the widespread severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) with host immune response and study the underlining molecular mechanism. N(6)-methylation of adenosine (m6A) in RNA regulates many physiological and disease processes. Here, we investigate m6A modification of the SARS-CoV-2 gene in regulating the host cell innate immune response. Our data show that the SARS-CoV-2 virus has m6A modifications that are enriched in the 3' end of the viral genome. We find that depletion of the host cell m6A methyltransferase METTL3 decreases m6A levels in SARS-CoV-2 and host genes, and m6A reduction in viral RNA increases RIG-I binding and subsequently enhances the downstream innate immune signaling pathway and inflammatory gene expression. METTL3 expression is reduced and inflammatory genes are induced in patients with severe coronavirus disease 2019 (COVID-19). These findings will aid in the understanding of COVID-19 pathogenesis and the design of future studies regulating innate immunity for COVID-19 treatment.