Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.3390/ijerph18084069

http://scihub22266oqcxt.onion/10.3390/ijerph18084069
suck pdf from google scholar
33921539!8069687!33921539
unlimited free pdf from europmc33921539    free
PDF from PMC    free
html from PMC    free

Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=33921539&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215

suck abstract from ncbi


Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 229.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid33921539      Int+J+Environ+Res+Public+Health 2021 ; 18 (8): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Applying Machine Learning to Identify Anti-Vaccination Tweets during the COVID-19 Pandemic #MMPMID33921539
  • To QG; To KG; Huynh VN; Nguyen NTQ; Ngo DTN; Alley SJ; Tran ANQ; Tran ANP; Pham NTT; Bui TX; Vandelanotte C
  • Int J Environ Res Public Health 2021[Apr]; 18 (8): ä PMID33921539show ga
  • Anti-vaccination attitudes have been an issue since the development of the first vaccines. The increasing use of social media as a source of health information may contribute to vaccine hesitancy due to anti-vaccination content widely available on social media, including Twitter. Being able to identify anti-vaccination tweets could provide useful information for formulating strategies to reduce anti-vaccination sentiments among different groups. This study aims to evaluate the performance of different natural language processing models to identify anti-vaccination tweets that were published during the COVID-19 pandemic. We compared the performance of the bidirectional encoder representations from transformers (BERT) and the bidirectional long short-term memory networks with pre-trained GLoVe embeddings (Bi-LSTM) with classic machine learning methods including support vector machine (SVM) and naive Bayes (NB). The results show that performance on the test set of the BERT model was: accuracy = 91.6%, precision = 93.4%, recall = 97.6%, F1 score = 95.5%, and AUC = 84.7%. Bi-LSTM model performance showed: accuracy = 89.8%, precision = 44.0%, recall = 47.2%, F1 score = 45.5%, and AUC = 85.8%. SVM with linear kernel performed at: accuracy = 92.3%, Precision = 19.5%, Recall = 78.6%, F1 score = 31.2%, and AUC = 85.6%. Complement NB demonstrated: accuracy = 88.8%, precision = 23.0%, recall = 32.8%, F1 score = 27.1%, and AUC = 62.7%. In conclusion, the BERT models outperformed the Bi-LSTM, SVM, and NB models in this task. Moreover, the BERT model achieved excellent performance and can be used to identify anti-vaccination tweets in future studies.
  • |*COVID-19[MESH]
  • |*Social Media[MESH]
  • |Bayes Theorem[MESH]
  • |Humans[MESH]
  • |Machine Learning[MESH]
  • |Pandemics[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box