Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1016/j.jprocont.2021.03.008

http://scihub22266oqcxt.onion/10.1016/j.jprocont.2021.03.008
suck pdf from google scholar
33867698!8041156!33867698
unlimited free pdf from europmc33867698    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid33867698      J+Process+Control 2021 ; 102 (ä): 1-14
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • State estimation-based control of COVID-19 epidemic before and after vaccine development #MMPMID33867698
  • Rajaei A; Raeiszadeh M; Azimi V; Sharifi M
  • J Process Control 2021[Jun]; 102 (ä): 1-14 PMID33867698show ga
  • In this study, a nonlinear robust control policy is designed together with a state observer in order to manage the novel coronavirus disease (COVID-19) outbreak having an uncertain epidemiological model with unmeasurable variables. This nonlinear model for the COVID-19 epidemic includes eight state variables (susceptible, exposed, infected, quarantined, hospitalized, recovered, deceased, and insusceptible populations). Two plausible scenarios are put forward in this article to control this epidemic before and after its vaccine invention. In the first scenario, the social distancing and hospitalization rates are employed as two applicable control inputs to diminish the exposed and infected groups. However, in the second scenario after the vaccine development, the vaccination rate is taken into account as the third control input to reduce the susceptible populations, in addition to the two objectives of the first scenario. The proposed feedback control measures are defined in terms of the hospitalized and deceased populations due to the available statistical data, while other unmeasurable compartmental variables are estimated by an extended Kalman filter (EKF). In other words, the susceptible, exposed, infected, quarantined, recovered, and insusceptible individuals cannot be identified precisely because of the asymptomatic infection of COVID-19 in some cases, its incubation period, and the lack of an adequate community screening. Utilizing the Lyapunov theorem, the stability and bounded tracking convergence of the closed-loop epidemiological system are investigated in the presence of modeling uncertainties. Finally, a comprehensive simulation study is conducted based on Canada's reported cases for two defined timing plans (with different treatment rates). Obtained results demonstrate that the developed EKF-based control scheme can achieve desired epidemic goals (exponential decrease of infected, exposed, and susceptible people).
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box