Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1021/acs.jcim.1c00159

http://scihub22266oqcxt.onion/10.1021/acs.jcim.1c00159
suck pdf from google scholar
33829781!ä!33829781

suck abstract from ncbi


Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid33829781      J+Chem+Inf+Model 2021 ; 61 (5): 2302-2312
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Benchmark of Popular Free Energy Approaches Revealing the Inhibitors Binding to SARS-CoV-2 Mpro #MMPMID33829781
  • Ngo ST; Tam NM; Pham MQ; Nguyen TH
  • J Chem Inf Model 2021[May]; 61 (5): 2302-2312 PMID33829781show ga
  • The COVID-19 pandemic has killed millions of people worldwide since its outbreak in December 2019. The pandemic is caused by the SARS-CoV-2 virus whose main protease (Mpro) is a promising drug target since it plays a key role in viral proliferation and replication. Currently, developing an effective therapy is an urgent task, which requires accurately estimating the ligand-binding free energy to SARS-CoV-2 Mpro. However, it should be noted that the accuracy of a free energy method probably depends on the protein target. A highly accurate approach for some targets may fail to produce a reasonable correlation with the experiment when a novel enzyme is considered as a drug target. Therefore, in this context, the ligand-binding affinity to SARS-CoV-2 Mpro was calculated via various approaches. The molecular docking approach was manipulated using Autodock Vina (Vina) and Autodock4 (AD4) protocols to preliminarily investigate the ligand-binding affinity and pose to SARS-CoV-2 Mpro. The binding free energy was then refined using the fast pulling of ligand (FPL), linear interaction energy (LIE), molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA), and free energy perturbation (FEP) methods. The benchmark results indicated that for docking calculations, Vina is more accurate than AD4, and for free energy methods, FEP is the most accurate method, followed by LIE, FPL, and MM-PBSA (FEP > LIE approximately FPL > MM-PBSA). Moreover, atomistic simulations revealed that the van der Waals interaction is the dominant factor. The residues Thr26, His41, Ser46, Asn142, Gly143, Cys145, His164, Glu166, and Gln189 are essential elements affecting the binding process. Our benchmark provides guidelines for further investigations using computational approaches.
  • |*COVID-19[MESH]
  • |*Pandemics[MESH]
  • |Benchmarking[MESH]
  • |Humans[MESH]
  • |Molecular Docking Simulation[MESH]
  • |Peptide Hydrolases[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box