Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1016/S1473-3099(21)00143-2

http://scihub22266oqcxt.onion/10.1016/S1473-3099(21)00143-2
suck pdf from google scholar
33743847!7972312!33743847
unlimited free pdf from europmc33743847    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid33743847      Lancet+Infect+Dis 2021 ; 21 (6): 793-802
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Vaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling study #MMPMID33743847
  • Moore S; Hill EM; Tildesley MJ; Dyson L; Keeling MJ
  • Lancet Infect Dis 2021[Jun]; 21 (6): 793-802 PMID33743847show ga
  • BACKGROUND: The dynamics of vaccination against SARS-CoV-2 are complicated by age-dependent factors, changing levels of infection, and the relaxation of non-pharmaceutical interventions (NPIs) as the perceived risk declines, necessitating the use of mathematical models. Our aims were to use epidemiological data from the UK together with estimates of vaccine efficacy to predict the possible long-term dynamics of SARS-CoV-2 under the planned vaccine rollout. METHODS: In this study, we used a mathematical model structured by age and UK region, fitted to a range of epidemiological data in the UK, which incorporated the planned rollout of a two-dose vaccination programme (doses 12 weeks apart, protection onset 14 days after vaccination). We assumed default vaccine uptake of 95% in those aged 80 years and older, 85% in those aged 50-79 years, and 75% in those aged 18-49 years, and then varied uptake optimistically and pessimistically. Vaccine efficacy against symptomatic disease was assumed to be 88% on the basis of Pfizer-BioNTech and Oxford-AstraZeneca vaccines being administered in the UK, and protection against infection was varied from 0% to 85%. We considered the combined interaction of the UK vaccination programme with multiple potential future relaxations (or removals) of NPIs, to predict the reproduction number (R) and pattern of daily deaths and hospital admissions due to COVID-19 from January, 2021, to January, 2024. FINDINGS: We estimate that vaccination alone is insufficient to contain the outbreak. In the absence of NPIs, even with our most optimistic assumption that the vaccine will prevent 85% of infections, we estimate R to be 1.58 (95% credible intervals [CI] 1.36-1.84) once all eligible adults have been offered both doses of the vaccine. Under the default uptake scenario, removal of all NPIs once the vaccination programme is complete is predicted to lead to 21 400 deaths (95% CI 1400-55 100) due to COVID-19 for a vaccine that prevents 85% of infections, although this number increases to 96 700 deaths (51 800-173 200) if the vaccine only prevents 60% of infections. Although vaccination substantially reduces total deaths, it only provides partial protection for the individual; we estimate that, for the default uptake scenario and 60% protection against infection, 48.3% (95% CI 48.1-48.5) and 16.0% (15.7-16.3) of deaths will be in individuals who have received one or two doses of the vaccine, respectively. INTERPRETATION: For all vaccination scenarios we investigated, our predictions highlight the risks associated with early or rapid relaxation of NPIs. Although novel vaccines against SARS-CoV-2 offer a potential exit strategy for the pandemic, success is highly contingent on the precise vaccine properties and population uptake, both of which need to be carefully monitored. FUNDING: National Institute for Health Research, Medical Research Council, and UK Research and Innovation.
  • |*COVID-19 Vaccines[MESH]
  • |*Models, Theoretical[MESH]
  • |*Vaccination[MESH]
  • |Adolescent[MESH]
  • |Adult[MESH]
  • |Age Factors[MESH]
  • |Aged[MESH]
  • |Aged, 80 and over[MESH]
  • |COVID-19/*epidemiology/*prevention & control[MESH]
  • |Databases, Factual[MESH]
  • |Hospitalization[MESH]
  • |Humans[MESH]
  • |Immunization Programs[MESH]
  • |Middle Aged[MESH]
  • |SARS-CoV-2[MESH]
  • |United Kingdom/epidemiology[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box