Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1016/j.eml.2021.101239

http://scihub22266oqcxt.onion/10.1016/j.eml.2021.101239
suck pdf from google scholar
33644275!7897962!33644275
unlimited free pdf from europmc33644275    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid33644275      Extreme+Mech+Lett 2021 ; 44 (ä): 101239
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Adhesive rolling of nanoparticles in a lateral flow inspired from diagnostics of COVID-19 #MMPMID33644275
  • Ye H; Shen Z; Li Y
  • Extreme Mech Lett 2021[Apr]; 44 (ä): 101239 PMID33644275show ga
  • Due to the lack of therapeutics and vaccines, diagnostics of COVID-19 emerges as one of the primary tools for controlling the spread of SARS-COV-2. Here we aim to develop a theoretical model to study the detection process of SARS-COV-2 in lateral flow device (LFD), which can achieve rapid antigen diagnostic tests. The LFD is modeled as the adhesion of a spherical nanoparticle (NP) coated with ligands on the surface, mimicking the SARS-COV-2, on an infinite substrate distributed with receptors under a simple shear flow. The adhesive behaviors of NPs in the LFD are governed by the ligand-receptor binding (LRB) and local hydrodynamics. Through energy balance analysis, three types of motion are predicted: (i) firm-adhesion (FA); (ii) adhesive-rolling (AR); and (iii) free-rolling (FR), which correspond to LRB-dominated, LRB-hydrodynamics-competed, and hydrodynamics-dominated regimes, respectively. The transitions of FA-to-AR and AR-to-FR are found to be triggered by overcoming LRB barrier and saturation of LRB torque, respectively. Most importantly, in the AR regime, the smaller NPs can move faster than their larger counterparts, induced by the LRB effect that depends on the radius R of NPs. In addition, a scaling law is found in the AR regime that v proportional, variant gamma Ralpha (rolling velocity v and shear rate gamma ), with an approximate scaling factor alpha approximately - 0.2 +/- 0.05 identified through fitting both theoretical and numerical results. The scaling factor emerges from the energy-based stochastic LRB model, and is confirmed to be universal by examining selections of different LRB model parameters. This size-dependent rolling behavior under the control of flow strength may provide the theoretical guidance for designing efficient LFD in detecting infectious disease.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box