Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1021/acs.accounts.0c00803

http://scihub22266oqcxt.onion/10.1021/acs.accounts.0c00803
suck pdf from google scholar
33617234!ä!33617234

suck abstract from ncbi

pmid33617234      Acc+Chem+Res 2021 ; 54 (6): 1385-1398
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Time and Pot Economy in Total Synthesis #MMPMID33617234
  • Hayashi Y
  • Acc Chem Res 2021[Mar]; 54 (6): 1385-1398 PMID33617234show ga
  • We would all like to make or obtain the materials or products we want as soon as possible. This is human nature. This is true also for chemists in the synthesis of organic molecules. All chemists would like to make their target molecules as soon as possible, particularly when their interest is in the physical or biological properties of those molecules.As demonstrated by today's COVID-19 (SARS-CoV-2) pandemic, rapid synthesis is also crucial to enable chemists to deliver effective therapeutic agents to the community. Several concepts are currently well-accepted as important for achieving this: atom economy, step economy, and redox economy. Considering the importance of synthesizing organic molecules rapidly, I recently proposed adding the concept of time economy.In a multisep synthesis, each step has to be completed within a short period of time to make the desired molecule rapidly. The development of rapid reactions is important but also insufficient. After each step, frequent and repetitive workup operations such as quenching the reaction, extraction, separation of water and organic phases, drying the organic phase, filtration, evaporation, and purification may be required, and the time necessary for these processing operations must be taken into account. Indeed, some of the most time-consuming operations in most syntheses are the purification stages.On the other hand, one-pot reactions are processes in which several sequential reactions are conducted in a single reaction vessel, which avoids the need to purify intermediates. One-pot reactions are a useful way to shorten the total synthesis time, and the approach generally leads to an increase in the yield and a reduction in the amount of chemical waste formed. Thus, I also propose the importance of pot economy.On the basis of these concepts of time and pot economy, we have accomplished efficient syntheses of several natural products and medicines. The key to the success of these syntheses is the use of diphenylprolinol silyl ether as an effective catalyst in a one-pot reaction, in which it does not disturb the subsequent reactions. Our strategy is (1) to construct the chiral key skeletons and/or key components of natural products and medicines directly using organocatalyst-mediated one-pot reactions and (2) to conduct the subsequent transformations to the final molecules in a small number of pots utilizing the internal quench method. By means of this strategy, PGE(1) methyl ester, estradiol methyl ether, and clinprost were synthesized in three, five, and seven pots, respectively. Furthermore, (-)-oseltamivir, ABT-341, baclofen, and Corey lactone were synthesized in a single reaction vessel. Further optimization of the reactions in terms of time economy allowed (-)-oseltamivir and Corey lactone to be synthesized within 60 and 152 min, respectively. These syntheses will be highlighted as case studies. Although the organocatalyst is a key compound in this Account, pot- and time-economical syntheses can be expanded to organometallic chemistry and, indeed, to organic chemistry in general.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box