Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1080/07391102.2021.1886174

http://scihub22266oqcxt.onion/10.1080/07391102.2021.1886174
suck pdf from google scholar
33583328!7885726!33583328
unlimited free pdf from europmc33583328    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid33583328      J+Biomol+Struct+Dyn 2022 ; 40 (14): 6534-6544
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • In silico identification and validation of natural antiviral compounds as potential inhibitors of SARS-CoV-2 methyltransferase #MMPMID33583328
  • Chandra A; Chaudhary M; Qamar I; Singh N; Nain V
  • J Biomol Struct Dyn 2022[Sep]; 40 (14): 6534-6544 PMID33583328show ga
  • The novel Coronavirus disease 2019 (COVID-19) is potentially fatal and caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Due to the unavailability of any proven treatment or vaccination, the outbreak of COVID-19 is wreaking havoc worldwide. Hence, there is an urgent need for therapeutics targeting SARS-CoV-2. Since, botanicals are an important resource for several efficacious antiviral agents, natural compounds gaining significant attention for COVID-19 treatment. In the present study, methyltranferase (MTase) of the SARS-CoV-2 is targeted using computational approach. The compounds were identified using molecular docking, virtual screening and molecular dynamics simulation studies. The binding mechanism of each compound was analyzed considering the stability and energetic parameter using in silico methods. We have found four natural antiviral compounds Amentoflavone, Baicalin, Daidzin and Luteoloside as strong inhibitors of methyltranferase of SARS-CoV-2. ADMET prediction and target analysis of the selected compounds showed favorable results. MD simulation was performed for four top-scored molecules to analyze the stability, binding mechanism and energy requirements. MD simulation studies indicated energetically favorable complex formation between MTase and the selected antiviral compounds. Furthermore, the structural effects on these substitutions were analyzed using the principles of each trajectories, which validated the interaction studies. Our analysis suggests that there is a very high probability that these compounds may have a good potential to inhibit Methyltransferase (MTase) of SARS-CoV-2 and to be used in the treatment of COVID-19. Further studies on these natural compounds may offer a quick therapeutic choice to treat COVID-19.Communicated by Ramaswamy H. Sarma.
  • |*COVID-19 Drug Treatment[MESH]
  • |*SARS-CoV-2[MESH]
  • |Antiviral Agents/chemistry/pharmacology[MESH]
  • |Humans[MESH]
  • |Methyltransferases[MESH]
  • |Molecular Docking Simulation[MESH]
  • |Molecular Dynamics Simulation[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box