Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1063/5.0015303

http://scihub22266oqcxt.onion/10.1063/5.0015303
suck pdf from google scholar
33304642!7709495!33304642
unlimited free pdf from europmc33304642    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid33304642      AIP+Adv 2020 ; 10 (11): 115023
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Pandemic infection rates are deterministic but cannot be modeled #MMPMID33304642
  • McCauley JL
  • AIP Adv 2020[Nov]; 10 (11): 115023 PMID33304642show ga
  • The covid-19 infection rates for a large number of infections collected from a large number of different sites are well defined with a negligible scatter. The simplest invertible iterated map, exponential growth and decay, emerges from country-wide histograms whenever Tchebychev's inequality is satisfied to within several decimal places. This is one point. Another is that failed covid-19 pandemic model predictions have been reported repeatedly by the news media. Model predictions fail because the observed infection rates are beyond modeling: any model that uses fixed rates or uses memory or averages of past rates cannot reproduce the data on active infections. When those possibilities are ruled out, then little is left. Under lockdown and social distancing, the rates unfold daily in small but unforeseeable steps, they are algorithmically complex. We can, however, use two days in the daily data, today and any single day in the past (generally yesterday), to make a useful forecast of future infections. No model provides results better than this simple forecast. We analyze the actual doubling times for covid-19 data and compare them with our predicted doubling times. Flattening and peaking are precisely defined. We identify and study the separate effects of social distancing vs recoveries in the daily infection rates. Social distancing can only cause flattening but recoveries are required in order for the active infections to peak and decay. Three models and their predictions are analyzed. Pandemic data for Austria, Germany, Italy, the USA, the UK, Finland, China, Taiwan, and Sweden are discussed.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box