Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=33254951&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215
Decay of SARS-CoV-2 RNA along the wastewater treatment outfitted with Upflow Anaerobic Sludge Blanket (UASB) system evaluated through two sample concentration techniques #MMPMID33254951
Kumar M; Kuroda K; Patel AK; Patel N; Bhattacharya P; Joshi M; Joshi CG
Sci Total Environ 2021[Feb]; 754 (?): 142329 PMID33254951show ga
For the first time, we present, i) an account of decay in the genetic material loading of SARS-CoV-2 during Upflow Anaerobic Sludge Blanket (UASB) treatment of wastewater, and ii) comparative evaluation of polyethylene glycol (PEG), and ultrafiltration as virus concentration methods from wastewater for the quantification of SARS-CoV-2 genes. The objectives were achieved through tracking of SARS-CoV-2 genetic loadings i.e. ORF1ab, N and S protein genes on 8th and 27th May 2020 along the wastewater treatment plant (106000 m(3) million liters per day) equipped with UASB system in Ahmedabad, India. PEG method performed better in removing materials inhibiting RT-qPCR for SARS-CoV-2 gene detection from the samples, as evident from constant and lower C(T) values of control (MS2). Using the PEG method, we found a reduction >1.3 log(10) reduction in SARS-CoV-2 RNA abundance during UASB treatment, and the RNA was not detected at all in the final effluent. The study implies that i) conventional wastewater treatment systems is effective in SARS-CoV-2 RNA removal, and ii) UASB system significantly reduces SARS-CoV-2 genetic loadings. Finally, PEG method is recommended for better sensitivity and inhibition removal during SARS-CoV-2 RNA quantification in wastewater.