Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1080/07391102.2020.1848636

http://scihub22266oqcxt.onion/10.1080/07391102.2020.1848636
suck pdf from google scholar
33226303!7754935!33226303
unlimited free pdf from europmc33226303    free
PDF from PMC    free
html from PMC    free
PDF vom PMID33226303  :  Publisher

suck abstract from ncbi

pmid33226303
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Targeting SARS-CoV-2 main protease: structure based virtual screening, in silico ADMET studies and molecular dynamics simulation for identification of potential inhibitors #MMPMID33226303
  • Uniyal A; Mahapatra MK; Tiwari V; Sandhir R; Kumar R
  • J Biomol Struct Dyn 2020[Nov]; ä (ä): 1-17 PMID33226303show ga
  • COVID-19 pandemic has created a healthcare crisis across the world and has put human life under life-threatening circumstances. The recent discovery of the crystallized structure of the main protease (Mpro) from SARS-CoV-2 has provided an opportunity for utilizing computational tools as an effective method for drug discovery. Targeting viral replication has remained an effective strategy for drug development. Mpro of SARS-COV-2 is the key protein in viral replication as it is involved in the processing of polyproteins to various structural and nonstructural proteins. Thus, Mpro represents a key target for the inhibition of viral replication specifically for SARS-CoV-2. We have used a virtual screening strategy by targeting Mpro against a library of commercially available compounds to identify potential inhibitors. After initial identification of hits by molecular docking-based virtual screening further MM/GBSA, predictive ADME analysis, and molecular dynamics simulation were performed. The virtual screening resulted in the identification of twenty-five top scoring structurally diverse hits that have free energy of binding (DeltaG) values in the range of -26-06 (for compound AO-854/10413043) to -59.81 Kcal/mol (for compound 329/06315047). Moreover, the top-scoring hits have favorable AMDE properties as calculated using in silico algorithms. Additionally, the molecular dynamics simulation revealed the stable nature of protein-ligand interaction and provided information about the amino acid residues involved in binding. Overall, this study led to the identification of potential SARS-CoV-2 Mpro hit compounds with favorable pharmacokinetic properties. We believe that the outcome of this study can help to develop novel Mpro inhibitors to tackle this pandemic.Communicated by Ramaswamy H. Sarma.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    1 ä.ä 2020