Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=33219933&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215
Design and performance evaluation of a photocatalytic reactor for indoor air disinfection #MMPMID33219933
Zacarias SM; Manassero A; Pirola S; Alfano OM; Satuf ML
Environ Sci Pollut Res Int 2021[May]; 28 (19): 23859-23867 PMID33219933show ga
Since COVID-19 pandemic, indoor air quality control has become a priority, and the development of air purification devices effective for disinfecting airborne viruses and bacteria is of outmost relevance. In this work, a photocatalytic device for the removal of airborne microorganisms is presented. It is an annular reactor filled with TiO(2)-coated glass rings and irradiated internally and externally by UV-A lamps. B. subtilis spores and vegetative cells have been employed as model biological pollutants. Three types of assays with aerosolized bacterial suspensions were performed to evaluate distinct purification processes: filtration, photocatalytic inactivation in the air phase, and photocatalytic inactivation over the TiO(2)-coated rings. The radiation distribution inside the reactor was analysed by performing Monte Carlo simulations of photon absorption in the photocatalytic bed. Complete removal of a high load of microorganisms in the air stream could be achieved in 1 h. Nevertheless, inactivation of retained bacteria in the reactor bed required longer irradiation periods: after 8 h under internal and external irradiation, the initial concentration of retained spores and vegetative cells was reduced by 68% and 99%, respectively. Efficiency parameters were also calculated to evaluate the influence of the irradiation conditions on the photocatalytic inactivation of bacteria attached at the coated rings.