Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.3390/s20216321

http://scihub22266oqcxt.onion/10.3390/s20216321
suck pdf from google scholar
33167561!7664219!33167561
unlimited free pdf from europmc33167561    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 219.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 219.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 219.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 219.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 219.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 219.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid33167561      Sensors+(Basel) 2020 ; 20 (21): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Application of Transfer Learning in EEG Decoding Based on Brain-Computer Interfaces: A Review #MMPMID33167561
  • Zhang K; Xu G; Zheng X; Li H; Zhang S; Yu Y; Liang R
  • Sensors (Basel) 2020[Nov]; 20 (21): ä PMID33167561show ga
  • The algorithms of electroencephalography (EEG) decoding are mainly based on machine learning in current research. One of the main assumptions of machine learning is that training and test data belong to the same feature space and are subject to the same probability distribution. However, this may be violated in EEG processing. Variations across sessions/subjects result in a deviation of the feature distribution of EEG signals in the same task, which reduces the accuracy of the decoding model for mental tasks. Recently, transfer learning (TL) has shown great potential in processing EEG signals across sessions/subjects. In this work, we reviewed 80 related published studies from 2010 to 2020 about TL application for EEG decoding. Herein, we report what kind of TL methods have been used (e.g., instance knowledge, feature representation knowledge, and model parameter knowledge), describe which types of EEG paradigms have been analyzed, and summarize the datasets that have been used to evaluate performance. Moreover, we discuss the state-of-the-art and future development of TL for EEG decoding. The results show that TL can significantly improve the performance of decoding models across subjects/sessions and can reduce the calibration time of brain-computer interface (BCI) systems. This review summarizes the current practical suggestions and performance outcomes in the hope that it will provide guidance and help for EEG research in the future.
  • |*Brain-Computer Interfaces[MESH]
  • |*Electroencephalography[MESH]
  • |*Machine Learning[MESH]
  • |Algorithms[MESH]
  • |Brain[MESH]
  • |Calibration[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box