Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1073/pnas.2011529117

http://scihub22266oqcxt.onion/10.1073/pnas.2011529117
suck pdf from google scholar
33106403!7668033!33106403
unlimited free pdf from europmc33106403    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid33106403      Proc+Natl+Acad+Sci+U+S+A 2020 ; 117 (45): 28506-28514
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Fine-scale spatial clustering of measles nonvaccination that increases outbreak potential is obscured by aggregated reporting data #MMPMID33106403
  • Masters NB; Eisenberg MC; Delamater PL; Kay M; Boulton ML; Zelner J
  • Proc Natl Acad Sci U S A 2020[Nov]; 117 (45): 28506-28514 PMID33106403show ga
  • The United States experienced historically high numbers of measles cases in 2019, despite achieving national measles vaccination rates above the World Health Organization recommendation of 95% coverage with two doses. Since the COVID-19 pandemic began, resulting in suspension of many clinical preventive services, pediatric vaccination rates in the United States have fallen precipitously, dramatically increasing risk of measles resurgence. Previous research has shown that measles outbreaks in high-coverage contexts are driven by spatial clustering of nonvaccination, which decreases local immunity below the herd immunity threshold. However, little is known about how to best conduct surveillance and target interventions to detect and address these high-risk areas, and most vaccination data are reported at the state-level-a resolution too coarse to detect community-level clustering of nonvaccination characteristic of recent outbreaks. In this paper, we perform a series of computational experiments to assess the impact of clustered nonvaccination on outbreak potential and magnitude of bias in predicting disease risk posed by measuring vaccination rates at coarse spatial scales. We find that, when nonvaccination is locally clustered, reporting aggregate data at the state- or county-level can result in substantial underestimates of outbreak risk. The COVID-19 pandemic has shone a bright light on the weaknesses in US infectious disease surveillance and a broader gap in our understanding of how to best use detailed spatial data to interrupt and control infectious disease transmission. Our research clearly outlines that finer-scale vaccination data should be collected to prevent a return to endemic measles transmission in the United States.
  • |*Models, Statistical[MESH]
  • |*Space-Time Clustering[MESH]
  • |Bias[MESH]
  • |Data Accuracy[MESH]
  • |Epidemics/prevention & control/*statistics & numerical data[MESH]
  • |Epidemiological Monitoring[MESH]
  • |Humans[MESH]
  • |Measles Vaccine/*administration & dosage/therapeutic use[MESH]
  • |Measles/*epidemiology/prevention & control[MESH]
  • |United States[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box