Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=33034007&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 217.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\33034007.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 J+Comput+Aided+Mol+Des 2020 ; 34 (12): 1237-1259 Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
Combining fragment docking with graph theory to improve ligand docking for homology model structures #MMPMID33034007
Sarfaraz S; Muneer I; Liu H
J Comput Aided Mol Des 2020[Dec]; 34 (12): 1237-1259 PMID33034007show ga
Computational protein-ligand docking is well-known to be prone to inaccuracies in input receptor structures, and it is challenging to obtain good docking results with computationally predicted receptor structures (e.g. through homology modeling). Here we introduce a fragment-based docking method and test if it reduces requirements on the accuracy of an input receptor structures relative to non-fragment docking approaches. In this method, small rigid fragments are docked first using AutoDock Vina to generate a large number of favorably docked poses spanning the receptor binding pocket. Then a graph theory maximum clique algorithm is applied to find combined sets of docked poses of different fragment types onto which the complete ligand can be properly aligned. On the basis of these alignments, possible binding poses of complete ligand are determined. This docking method is first tested for bound docking on a series of Cytochrome P450 (CYP450) enzyme-substrate complexes, in which experimentally determined receptor structures are used. For all complexes tested, ligand poses of less than 1 A root mean square deviations (RMSD) from the actual binding positions can be recovered. Then the method is tested for unbound docking with modeled receptor structures for a number of protein-ligand complexes from different families including the very recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protease. For all complexes, poses with RMSD less than 3 A from actual binding positions can be recovered. Our results suggest that for docking with approximately modeled receptor structures, fragment-based methods can be more effective than common complete ligand docking approaches.
|*Molecular Docking Simulation[MESH]
|*Pandemics[MESH]
|ATPases Associated with Diverse Cellular Activities/chemistry/metabolism[MESH]