Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1183/13993003.02060-2020

http://scihub22266oqcxt.onion/10.1183/13993003.02060-2020
suck pdf from google scholar
32859676!7453731!32859676
unlimited free pdf from europmc32859676    free
PDF from PMC    free
html from PMC    free

Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=32859676&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215

suck abstract from ncbi


Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 265.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 265.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 265.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid32859676      Eur+Respir+J 2020 ; 56 (6): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Highly sensitive and specific diagnosis of COVID-19 by reverse transcription multiple cross-displacement amplification-labelled nanoparticles biosensor #MMPMID32859676
  • Li S; Jiang W; Huang J; Liu Y; Ren L; Zhuang L; Zheng Q; Wang M; Yang R; Zeng Y; Wang Y
  • Eur Respir J 2020[Dec]; 56 (6): ä PMID32859676show ga
  • BACKGROUND: The ongoing outbreak of the novel human coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (also known as 2019-nCoV) has become a global health concern. Rapid and easy-to-use diagnostic techniques are urgently needed to diagnose SARS-CoV-2 infection. METHODS: We devised a reverse transcription multiple cross-displacement amplification (RT-MCDA) coupled with a nanoparticle-based biosensor assay (RT-MCDA-BS) for rapid, sensitive and specific diagnosis of coronavirus disease 2019 (COVID-19). Two primer sets were designed to target the open reading frame 1a/b and nucleoprotein gene of SARS-CoV-2. A total of 183 clinical samples, including 65 patients with COVID-19 infection and 118 patients with other pathogen infections were used to testify the assay's feasibility. Diagnosis results were reported visually using the biosensor. FINDINGS: The assay designed was performed using a simple instrument which could maintain the reaction in a constant temperature at 64 degrees C for only 35 min. The total COVID-19 RT-MCDA-BS test procedure could be finished within 1 h. The COVID-19 RT-MCDA-BS could detect down to five copies of target sequences. Among 65 clinical samples from the COVID-19 patients, 22 (33.8%) positive results were obtained from faeces, nasal, pharyngeal and anal swabs via COVID-19 RT-MCDA-BS assay, while real-time reverse transcription-PCR assay only detected 20 (30.7%) positive results in these samples. No positive results were obtained from clinical samples with non-COVID-19 infections. INTERPRETATION: COVID-19 RT-MCDA-BS was a rapid, reliable, low-cost and easy-to-use assay, which could provide an attractive laboratory tool to diagnose COVID-19 in multiple clinical specimens, especially for field, clinic laboratories and primary care facilities in resource-poor settings.
  • |*Biosensing Techniques[MESH]
  • |*Reverse Transcription[MESH]
  • |COVID-19 Testing/*methods[MESH]
  • |COVID-19/*diagnosis[MESH]
  • |Feasibility Studies[MESH]
  • |Humans[MESH]
  • |Molecular Diagnostic Techniques/*methods[MESH]
  • |Nanoparticles[MESH]
  • |Pandemics[MESH]
  • |SARS-CoV-2[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box