Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


suck pdf from google scholar
unlimited free pdf from europmc32752938    free
PDF from PMC    free
html from PMC    free
PDF vom PMID32752938  :  Publisher

suck abstract from ncbi

Nephropedia Template TP Text

Twit Text FOAVip

Twit Text #

English Wikipedia

  • In silico identification of widely used and well-tolerated drugs as potential SARS-CoV-2 3C-like protease and viral RNA-dependent RNA polymerase inhibitors for direct use in clinical trials #MMPMID32752938
  • Gul S; Ozcan O; Asar S; Okyar A; Baris I; Kavakli IH
  • J Biomol Struct Dyn 2021[Oct]; 39 (17): 6772-6791 PMID32752938show ga
  • Despite strict measures taken by many countries, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be an issue of global concern. Currently, there are no clinically proven pharmacotherapies for coronavirus disease 2019, despite promising initial results obtained from drugs such as azithromycin and hydroxychloroquine. Therefore, the repurposing of clinically approved drugs for use against SARS-CoV-2 has become a viable strategy. Here, we searched for drugs that target SARS-CoV-2 3C-like protease (3CL(pro)) and viral RNA-dependent RNA polymerase (RdRp) by in silico screening of the U.S. Food and Drug Administration approved drug library. Well-tolerated and widely used drugs were selected for molecular dynamics (MD) simulations to evaluate drug-protein interactions and their persistence under physiological conditions. Tetracycline, dihydroergotamine, ergotamine, dutasteride, nelfinavir, and paliperidone formed stable interactions with 3CL(pro) based on MD simulation results. Similar analysis with RdRp showed that eltrombopag, tipranavir, ergotamine, and conivaptan bound to the enzyme with high binding free energies. Docking results suggest that ergotamine, dihydroergotamine, bromocriptine, dutasteride, conivaptan, paliperidone, and tipranavir can bind to both enzymes with high affinity. As these drugs are well tolerated, cost-effective, and widely used, our study suggests that they could potentially to be used in clinical trials for the treatment of SARS-CoV-2-infected patients.Communicated by Ramaswamy H. Sarma.
  • |*COVID-19[MESH]
  • |*Pharmaceutical Preparations[MESH]
  • |Antiviral Agents[MESH]
  • |Humans[MESH]
  • |Molecular Docking Simulation[MESH]
  • |Molecular Dynamics Simulation[MESH]
  • |Peptide Hydrolases[MESH]
  • |Protease Inhibitors[MESH]
  • |RNA-Dependent RNA Polymerase[MESH]
  • |SARS-CoV-2[MESH]

  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    6772 17.39 2021