Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1152/physrev.00018.2020

http://scihub22266oqcxt.onion/10.1152/physrev.00018.2020
suck pdf from google scholar
32721181!7839651!32721181
unlimited free pdf from europmc32721181    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi

pmid32721181      Physiol+Rev 2020 ; 100 (4): 1839-1850
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Immunometabolic Status of COVID-19 Cancer Patients #MMPMID32721181
  • Sica A; Colombo MP; Trama A; Horn L; Garassino MC; Torri V
  • Physiol Rev 2020[Oct]; 100 (4): 1839-1850 PMID32721181show ga
  • Cancer patients appear to be more likely to be diagnosed with coronavirus disease 2019 (COVID-19). This is supported by the understanding of immunometabolic pathways that intersect patients with infection and cancer. However, data derived by case series and retrospective studies do not offer a coherent interpretation, since data from China suggest an increased risk of COVID-19, while data from the United States and Italy show a prevalence of COVID-19 in cancer patients comparable with the general population. Noteworthy, cancer and COVID-19 exploit distinct patterns of macrophage activation that promote disease progression in the most severe forms. In particular, the alternative activation of M2-polarized macrophages plays a crucial role in cancer progression. In contrast, the macrophage-activation syndrome appears as the source of M1-related cytokine storm in severe COVID-19 disease, thus indicating macrophages as a source of distinct inflammatory states in the two diseases, nonetheless as a common therapeutic target. New evidence indicates that NAMPT/NAD metabolism can direct both innate immune cell effector functions and the homeostatic robustness, in both cancer and infection. Moreover, a bidirectional relationship exists between the metabolism of NAD and the protective role that angiotensin converting enzyme 2, the COVID-19 receptor, can play against hyperinflammation. Within this immunometabolic framework, the review considers possible interference mechanisms that viral infections and tumors elicit on therapies and provides an overview for the management of patients with cancer affected by COVID-19, particularly for the balance of risk and benefit when planning normally routine cancer treatments and follow-up appointments.
  • |Angiotensin-Converting Enzyme 2[MESH]
  • |Animals[MESH]
  • |Betacoronavirus/immunology/*pathogenicity[MESH]
  • |COVID-19[MESH]
  • |Coronavirus Infections/complications/*immunology[MESH]
  • |Cytokines/metabolism[MESH]
  • |Humans[MESH]
  • |Neoplasms/complications/*immunology[MESH]
  • |Nicotinamide Phosphoribosyltransferase/metabolism[MESH]
  • |Pandemics[MESH]
  • |Peptidyl-Dipeptidase A/immunology/*metabolism[MESH]
  • |Pneumonia, Viral/complications/*immunology[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box