Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


suck pdf from google scholar
unlimited free pdf from europmc32679006    free
PDF from PMC    free
html from PMC    free
PDF vom PMID32679006  :  Publisher

suck abstract from ncbi

Nephropedia Template TP Text

Twit Text FOAVip

Twit Text #

English Wikipedia

  • Drug repurposing studies targeting SARS-CoV-2: an ensemble docking approach on drug target 3C-like protease (3CL(pro)) #MMPMID32679006
  • Koulgi S; Jani V; Uppuladinne M; Sonavane U; Nath AK; Darbari H; Joshi R
  • J Biomol Struct Dyn 2021[Sep]; 39 (15): 5735-5755 PMID32679006show ga
  • The COVID-19 pandemic has been responsible for several deaths worldwide. The causative agent behind this disease is the Severe Acute Respiratory Syndrome - novel Coronavirus 2 (SARS-CoV-2). SARS-CoV-2 belongs to the category of RNA viruses. The main protease, responsible for the cleavage of the viral polyprotein is considered as one of the hot targets for treating COVID-19. Earlier reports suggest the use of HIV anti-viral drugs for targeting the main protease of SARS-CoV, which caused SARS in the year 2002-2003. Hence, drug repurposing approach may prove to be useful in targeting the main protease of SARS-CoV-2. The high-resolution crystal structure of the main protease of SARS-CoV-2 (PDB ID: 6LU7) was used as the target. The Food and Drug Administration approved and SWEETLEAD database of drug molecules were screened. The apo form of the main protease was simulated for a cumulative of 150 ns and 10 mus open-source simulation data was used, to obtain conformations for ensemble docking. The representative structures for docking were selected using RMSD-based clustering and Markov State Modeling analysis. This ensemble docking approach for the main protease helped in exploring the conformational variation in the drug-binding site of the main protease leading to the efficient binding of more relevant drug molecules. The drugs obtained as top hits from the ensemble docking possessed anti-bacterial and anti-viral properties. This in silico ensemble docking approach would support the identification of potential candidates for repurposing against COVID-19.Communicated by Ramaswamy H. Sarma.
  • |*COVID-19[MESH]
  • |*Pharmaceutical Preparations[MESH]
  • |Drug Repositioning[MESH]
  • |Humans[MESH]
  • |Molecular Docking Simulation[MESH]
  • |Molecular Dynamics Simulation[MESH]
  • |Pandemics[MESH]
  • |Peptide Hydrolases[MESH]
  • |Protease Inhibitors/pharmacology[MESH]
  • |SARS-CoV-2[MESH]

  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    5735 15.39 2021