Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1021/acs.bioconjchem.0c00287

http://scihub22266oqcxt.onion/10.1021/acs.bioconjchem.0c00287
suck pdf from google scholar
32639742!ä!32639742

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid32639742      Bioconjug+Chem 2020 ; 31 (8): 1873-1882
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • The Potential of Various Nanotechnologies for Coronavirus Diagnosis/Treatment Highlighted through a Literature Analysis #MMPMID32639742
  • Alphandery E
  • Bioconjug Chem 2020[Aug]; 31 (8): 1873-1882 PMID32639742show ga
  • With the current COVID-19 outbreak, it has become essential to develop efficient methods for the treatment and detection of this virus. Among the new approaches that could be tested, that relying on nanotechnology finds one of its main grounds in the similarity between nanoparticle (NP) and coronavirus (COV) sizes, which promotes NP-COV interactions. Since COVID-19 is very recent, most studies in this field have focused on other types of coronavirus than COVID-19, such as those involved in MERS or SARS diseases. Although their number is limited, they have led to promising results on various COV using a wide range of different types of nanosystems, e.g., nanoparticles, quantum dos, or nanoassemblies of polymers/proteins. Additional efforts deserve to be spent in this field to consolidate these findings. Here, I first summarize the different nanotechnology-based methods used for COV detection, i.e., optical, electrical, or PCR ones, whose sensitivity was improved by the presence of nanoparticles. Furthermore, I present vaccination methods, which comprise nanoparticles used either as adjuvants or as active principles. They often yield a better-controlled immune response, possibly due to an improved antigen presentation/processing than in non-nanoformulated vaccines. Certain antiviral approaches also took advantage of nanoparticle uses, leading to specific mechanisms such as the blocking of virus replication at the cellular level or the reduction of a COV induced apoptotic cellular death.
  • |Antiviral Agents/pharmacology/therapeutic use[MESH]
  • |Betacoronavirus/drug effects/immunology[MESH]
  • |COVID-19[MESH]
  • |Coronavirus Infections/*diagnosis/drug therapy/prevention & control/*therapy[MESH]
  • |Humans[MESH]
  • |Nanomedicine/*methods[MESH]
  • |Pandemics/prevention & control[MESH]
  • |Pneumonia, Viral/*diagnosis/drug therapy/prevention & control/*therapy[MESH]
  • |SARS-CoV-2[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box