Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.3390/v12070705

http://scihub22266oqcxt.onion/10.3390/v12070705
suck pdf from google scholar
32629804!7412090!32629804
unlimited free pdf from europmc32629804    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid32629804      Viruses 2020 ; 12 (7): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Repurposing Therapeutics for Potential Treatment of SARS-CoV-2: A Review #MMPMID32629804
  • Santos J; Brierley S; Gandhi MJ; Cohen MA; Moschella PC; Declan ABL
  • Viruses 2020[Jun]; 12 (7): ä PMID32629804show ga
  • The need for proven disease-specific treatments for the novel pandemic coronavirus SARS-CoV-2 necessitates a worldwide search for therapeutic options. Since the SARS-CoV-2 virus shares extensive homology with SARS-CoV and MERS-CoV, effective therapies for SARS-CoV and MERS-CoV may also have therapeutic potential for the current COVID-19 outbreak. To identify therapeutics that might be repositioned for treatment of the SARS-CoV-2 disease COVID-19, we strategically reviewed the literature to identify existing therapeutics with evidence of efficacy for the treatment of the three coronaviruses that cause severe respiratory illness (SARS-CoV, MERS-CoV, and SARS-CoV-2). Mechanistic and in vitro analyses suggest multiple promising therapeutic options with potential for repurposing to treat patients with COVID-19. Therapeutics with particularly high potential efficacy for repurposing include camostat mesylate, remdesivir, favipiravir, tocilizumab, baricitinib, convalescent plasma, and humanized monoclonal antibodies. Camostat mesylate has shown therapeutic potential, likely by preventing viral entry into epithelial cells. In early research, the targeted antivirals remdesivir and favipiravir appear to benefit patients by decreasing viral replication; clinical trials suggest that remdesivir speeds recovery from COVID-19. Tocilizumab and baricitinib appear to improve mortality by preventing a severe cytokine storm. Convalescent plasma and humanized monoclonal antibodies offer passive immunity and decreased recovery time. This review highlights potential therapeutic options that may be repurposed to treat COVID-19 and suggests opportunities for further research.
  • |Antiviral Agents/*therapeutic use[MESH]
  • |Betacoronavirus/*drug effects[MESH]
  • |COVID-19[MESH]
  • |Coronavirus Infections/*drug therapy[MESH]
  • |Humans[MESH]
  • |Pandemics[MESH]
  • |Pneumonia, Viral/*drug therapy[MESH]
  • |SARS-CoV-2[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box