Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1371/journal.pmed.1003144

http://scihub22266oqcxt.onion/10.1371/journal.pmed.1003144
suck pdf from google scholar
32544156!7297408!32544156
unlimited free pdf from europmc32544156    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid32544156      PLoS+Med 2020 ; 17 (6): e1003144
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • The potential impact of COVID-19 in refugee camps in Bangladesh and beyond: A modeling study #MMPMID32544156
  • Truelove S; Abrahim O; Altare C; Lauer SA; Grantz KH; Azman AS; Spiegel P
  • PLoS Med 2020[Jun]; 17 (6): e1003144 PMID32544156show ga
  • BACKGROUND: COVID-19 could have even more dire consequences in refugees camps than in general populations. Bangladesh has confirmed COVID-19 cases and hosts almost 1 million Rohingya refugees from Myanmar, with 600,000 concentrated in the Kutupalong-Balukhali Expansion Site (mean age, 21 years; standard deviation [SD], 18 years; 52% female). Projections of the potential COVID-19 burden, epidemic speed, and healthcare needs in such settings are critical for preparedness planning. METHODS AND FINDINGS: To explore the potential impact of the introduction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the Kutupalong-Balukhali Expansion Site, we used a stochastic Susceptible Exposed Infectious Recovered (SEIR) transmission model with parameters derived from emerging literature and age as the primary determinant of infection severity. We considered three scenarios with different assumptions about the transmission potential of SARS-CoV-2. From the simulated infections, we estimated hospitalizations, deaths, and healthcare needs expected, age-adjusted for the Kutupalong-Balukhali Expansion Site age distribution. Our findings suggest that a large-scale outbreak is likely after a single introduction of the virus into the camp, with 61%-92% of simulations leading to at least 1,000 people infected across scenarios. On average, in the first 30 days of the outbreak, we expect 18 (95% prediction interval [PI], 2-65), 54 (95% PI, 3-223), and 370 (95% PI, 4-1,850) people infected in the low, moderate, and high transmission scenarios, respectively. These reach 421,500 (95% PI, 376,300-463,500), 546,800 (95% PI, 499,300-567,000), and 589,800 (95% PI, 578,800-595,600) people infected in 12 months, respectively. Hospitalization needs exceeded the existing hospitalization capacity of 340 beds after 55-136 days, between the low and high transmission scenarios. We estimate 2,040 (95% PI, 1,660-2,500), 2,650 (95% PI, 2,030-3,380), and 2,880 (95% PI, 2,090-3,830) deaths in the low, moderate, and high transmission scenarios, respectively. Due to limited data at the time of analyses, we assumed that age was the primary determinant of infection severity and hospitalization. We expect that comorbidities, limited hospitalization, and intensive care capacity may increase this risk; thus, we may be underestimating the potential burden. CONCLUSIONS: Our findings suggest that a COVID-19 epidemic in a refugee settlement may have profound consequences, requiring large increases in healthcare capacity and infrastructure that may exceed what is currently feasible in these settings. Detailed and realistic planning for the worst case in Kutupalong-Balukhali and all refugee camps worldwide must begin now. Plans should consider novel and radical strategies to reduce infectious contacts and fill health worker gaps while recognizing that refugees may not have access to national health systems.
  • |*Health Services Needs and Demand[MESH]
  • |*Hospitalization[MESH]
  • |*Intensive Care Units[MESH]
  • |*Refugee Camps[MESH]
  • |*Refugees[MESH]
  • |*Surge Capacity[MESH]
  • |Adolescent[MESH]
  • |Adult[MESH]
  • |Aged[MESH]
  • |Aged, 80 and over[MESH]
  • |Bangladesh/epidemiology[MESH]
  • |Betacoronavirus[MESH]
  • |COVID-19[MESH]
  • |Child[MESH]
  • |Child, Preschool[MESH]
  • |Computer Simulation[MESH]
  • |Coronavirus Infections/*epidemiology/mortality/transmission[MESH]
  • |Female[MESH]
  • |Health Workforce[MESH]
  • |Humans[MESH]
  • |Infant[MESH]
  • |Infant, Newborn[MESH]
  • |Male[MESH]
  • |Middle Aged[MESH]
  • |Models, Theoretical[MESH]
  • |Myanmar/ethnology[MESH]
  • |Pandemics[MESH]
  • |Pneumonia, Viral/*epidemiology/mortality/transmission[MESH]
  • |SARS-CoV-2[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box