Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1016/j.eml.2020.100817

http://scihub22266oqcxt.onion/10.1016/j.eml.2020.100817
suck pdf from google scholar
32537481!7278653!32537481
unlimited free pdf from europmc32537481    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 219.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 219.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 219.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 219.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid32537481      Extreme+Mech+Lett 2020 ; 39 (ä): 100817
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • EML webinar overview: Simulation-assisted discovery of membrane targeting nanomedicine #MMPMID32537481
  • Zou G; Liu Y; Gao H
  • Extreme Mech Lett 2020[Sep]; 39 (ä): 100817 PMID32537481show ga
  • The COVID-19 pandemic has brought infectious diseases again to the forefront of global public health concerns. In this EML webinar (Gao, 2020), we discuss some recent work on simulation-assisted discovery of membrane targeting nanomedicine to counter increasing antimicrobial resistance and potential application of similar ideas to the current pandemic. A recent report led by the world health organization (WHO) warned that 10 million people worldwide could die of bacterial infections each year by 2050. To avert the crisis, membrane targeting antibiotics are drawing increasing attention due to their intrinsic advantage of low resistance development. In collaboration with a number of experimental groups, we show examples of simulation-assisted discovery of molecular agents capable of selectively penetrating and aggregating in bacterial lipid membranes, causing membrane permeability/rupture. Through systematic all-atom molecular dynamics simulations and free energy analysis, we demonstrate that the membrane activity of the molecular agents correlates with their ability to enter, perturb and permeabilize the lipid bilayers. Further study on different cell membranes demonstrates that the selectivity results from the presence of cholesterol in mammalian but not in bacterial membranes, as the cholesterol can condense the hydrophobic region of membrane, preventing the penetration of the molecular agents. Following the molecular penetration, we establish a continuum theory and derive the energetic driving force for the domain aggregation and pore growth on lipid membrane. We show that the energy barrier to membrane pore formation can be significantly lowered through molecular aggregation on a large domain with intrinsic curvature and a sharp interface. The theory is consistent with experimental observations and validated with coarse-grained molecular dynamics simulations of molecular domain aggregation leading to pore formation in a lipid membrane. The mechanistic modelling and simulation provide some fundamental principles on how molecular antimicrobials interact with bacterial membranes and damage them through domain aggregation and pore formation. For treating viral infections and cancer therapy, we discuss potential size- and lipid-type-based selectivity principles for developing membrane active nanomedicine. These studies suggest a general simulation-assisted platform to accelerate discovery and innovation in nanomedicine against infectious diseases. EML Webinar speakers are updated at https://imechanica.org/node/24132.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box