Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\32515974.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 Nano+Lett 2020 ; 20 (7): 5367-5375 Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
Spiky Nanostructures with Geometry-matching Topography for Virus Inhibition #MMPMID32515974
Nie C; Stadtmuller M; Yang H; Xia Y; Wolff T; Cheng C; Haag R
Nano Lett 2020[Jul]; 20 (7): 5367-5375 PMID32515974show ga
Geometry-matching has been known to benefit the formation of stable biological interactions in natural systems. Herein, we report that the spiky nanostructures with matched topography to the influenza A virus (IAV) virions could be used to design next-generation advanced virus inhibitors. We demonstrated that nanostructures with spikes between 5 and 10 nm bind significantly better to virions than smooth nanoparticles, due to the short spikes inserting into the gaps of glycoproteins of the IAV virion. Furthermore, an erythrocyte membrane (EM) was coated to target the IAV, and the obtained EM-coated nanostructures could efficiently prevent IAV virion binding to the cells and inhibit subsequent infection. In a postinfection study, the EM-coated nanostructures reduced >99.9% virus replication at the cellular nontoxic dosage. We predict that such a combination of geometry-matching topography and cellular membrane coating will also push forward the development of nanoinhibitors for other virus strains, including SARS-CoV-2.