Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=32436845&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215
A review on the use of artificial intelligence for medical imaging of the lungs of patients with coronavirus disease 2019 #MMPMID32436845
Ito R; Iwano S; Naganawa S
Diagn Interv Radiol 2020[Sep]; 26 (5): 443-448 PMID32436845show ga
The results of research on the use of artificial intelligence (AI) for medical imaging of the lungs of patients with coronavirus disease 2019 (COVID-19) has been published in various forms. In this study, we reviewed the AI for diagnostic imaging of COVID-19 pneumonia. PubMed, arXiv, medRxiv, and Google scholar were used to search for AI studies. There were 15 studies of COVID-19 that used AI for medical imaging. Of these, 11 studies used AI for computed tomography (CT) and 4 used AI for chest radiography. Eight studies presented independent test data, 5 used disclosed data, and 4 disclosed the AI source codes. The number of datasets ranged from 106 to 5941, with sensitivities ranging from 0.67-1.00 and specificities ranging from 0.81-1.00 for prediction of COVID-19 pneumonia. Four studies with independent test datasets showed a breakdown of the data ratio and reported prediction of COVID-19 pneumonia with sensitivity, specificity, and area under the curve (AUC). These 4 studies showed very high sensitivity, specificity, and AUC, in the range of 0.9-0.98, 0.91-0.96, and 0.96-0.99, respectively.