Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1007/s10654-020-00649-w

http://scihub22266oqcxt.onion/10.1007/s10654-020-00649-w
suck pdf from google scholar
32430840!7237242!32430840
unlimited free pdf from europmc32430840    free
PDF from PMC    free
html from PMC    free

Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=32430840&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215

suck abstract from ncbi


Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 265.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 265.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid32430840      Eur+J+Epidemiol 2020 ; 35 (5): 389-399
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Dynamic interventions to control COVID-19 pandemic: a multivariate prediction modelling study comparing 16 worldwide countries #MMPMID32430840
  • Chowdhury R; Heng K; Shawon MSR; Goh G; Okonofua D; Ochoa-Rosales C; Gonzalez-Jaramillo V; Bhuiya A; Reidpath D; Prathapan S; Shahzad S; Althaus CL; Gonzalez-Jaramillo N; Franco OH
  • Eur J Epidemiol 2020[May]; 35 (5): 389-399 PMID32430840show ga
  • To date, non-pharmacological interventions (NPI) have been the mainstay for controlling the coronavirus disease-2019 (COVID-19) pandemic. While NPIs are effective in preventing health systems overload, these long-term measures are likely to have significant adverse economic consequences. Therefore, many countries are currently considering to lift the NPIs-increasing the likelihood of disease resurgence. In this regard, dynamic NPIs, with intervals of relaxed social distancing, may provide a more suitable alternative. However, the ideal frequency and duration of intermittent NPIs, and the ideal "break" when interventions can be temporarily relaxed, remain uncertain, especially in resource-poor settings. We employed a multivariate prediction model, based on up-to-date transmission and clinical parameters, to simulate outbreak trajectories in 16 countries, from diverse regions and economic categories. In each country, we then modelled the impacts on intensive care unit (ICU) admissions and deaths over an 18-month period for following scenarios: (1) no intervention, (2) consecutive cycles of mitigation measures followed by a relaxation period, and (3) consecutive cycles of suppression measures followed by a relaxation period. We defined these dynamic interventions based on reduction of the mean reproduction number during each cycle, assuming a basic reproduction number (R(0)) of 2.2 for no intervention, and subsequent effective reproduction numbers (R) of 0.8 and 0.5 for illustrative dynamic mitigation and suppression interventions, respectively. We found that dynamic cycles of 50-day mitigation followed by a 30-day relaxation reduced transmission, however, were unsuccessful in lowering ICU hospitalizations below manageable limits. By contrast, dynamic cycles of 50-day suppression followed by a 30-day relaxation kept the ICU demands below the national capacities. Additionally, we estimated that a significant number of new infections and deaths, especially in resource-poor countries, would be averted if these dynamic suppression measures were kept in place over an 18-month period. This multi-country analysis demonstrates that intermittent reductions of R below 1 through a potential combination of suppression interventions and relaxation can be an effective strategy for COVID-19 pandemic control. Such a "schedule" of social distancing might be particularly relevant to low-income countries, where a single, prolonged suppression intervention is unsustainable. Efficient implementation of dynamic suppression interventions, therefore, confers a pragmatic option to: (1) prevent critical care overload and deaths, (2) gain time to develop preventive and clinical measures, and (3) reduce economic hardship globally.
  • |*Coronavirus[MESH]
  • |Betacoronavirus[MESH]
  • |COVID-19[MESH]
  • |Communicable Disease Control/*methods[MESH]
  • |Coronavirus Infections/epidemiology/*prevention & control/transmission[MESH]
  • |Humans[MESH]
  • |Models, Theoretical[MESH]
  • |Pandemics/*prevention & control[MESH]
  • |Pneumonia, Viral/epidemiology/*prevention & control/transmission[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box