Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\32422320.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 J+Mol+Cell+Cardiol 2020 ; 144 (ä): 63-65 Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
p38 MAPK inhibition: A promising therapeutic approach for COVID-19 #MMPMID32422320
Grimes JM; Grimes KV
J Mol Cell Cardiol 2020[Jul]; 144 (ä): 63-65 PMID32422320show ga
COVID-19, caused by the SARS-CoV-2 virus, is a major source of morbidity and mortality due to its inflammatory effects in the lungs and heart. The p38 MAPK pathway plays a crucial role in the release of pro-inflammatory cytokines such as IL-6 and has been implicated in acute lung injury and myocardial dysfunction. The overwhelming inflammatory response in COVID-19 infection may be caused by disproportionately upregulated p38 activity, explained by two mechanisms. First, angiotensin-converting enzyme 2 (ACE2) activity is lost during SARS-CoV-2 viral entry. ACE2 is highly expressed in the lungs and heart and converts Angiotensin II into Angiotensin 1-7. Angiotensin II signals proinflammatory, pro-vasoconstrictive, pro-thrombotic activity through p38 MAPK activation, which is countered by Angiotensin 1-7 downregulation of p38 activity. Loss of ACE2 upon viral entry may tip the balance towards destructive p38 signaling through Angiotensin II. Second, SARS-CoV was previously shown to directly upregulate p38 activity via a viral protein, similar to other RNA respiratory viruses that may hijack p38 activity to promote replication. Given the homology between SARS-CoV and SARS-CoV-2, the latter may employ a similar mechanism. Thus, SARS-CoV-2 may induce overwhelming inflammation by directly activating p38 and downregulating a key inhibitory pathway, while simultaneously taking advantage of p38 activity to replicate. Therapeutic inhibition of p38 could therefore attenuate COVID-19 infection. Interestingly, a prior preclinical study showed protective effects of p38 inhibition in a SARS-CoV mouse model. A number of p38 inhibitors are in the clinical stage and should be considered for clinical trials in serious COVID-19 infection.